QB365 Question Paper Software 12th Standard - Chemistry d- and f- Block Elements Assertion and reason Exam Time: 00:20 Hrs Date: 2025-10-01 Total Marks: 10 ### **Questions:** 1.In the following questions an Assertion (A) is followed by a corresponding Reason (R) Use the following keys to choose the appropriate answer. **Assertion (A)** First ionisation enthalpy of Cr is lower than that of Zn. **Reason (R)** Ionisation enthalpy of Cr is lower than Zn due to the stability of d^5 -electron configuration. #### Codes: - (a) Both (A) and (R) are correct, (R) is the correct explanation of (A). - (b) Both (A) and (R) are correct, (R) is not the correct explanation of (A). - (c) (A) is correct; (R) is incorrect. - (d) (A) is incorrect; (R) is correct. - 2.In the following questions an Assertion (A) is followed by a corresponding Reason (R) Use the following keys to choose the appropriate answer. **Assertion (A)** Cr^{2+} is reducing, while Mn^{3+} is oxidising even both have d^4 -configuration. **Reason (R)** Configuration of Cu changes from d^3 to d^4 . #### Codes: - (a) Both (A) and (R) are correct, (R) is the correct explanation of (A). - (b) Both (A) and (R) are correct, (R) is not the correct explanation of (A). - (c) (A) is correct; (R) is incorrect. - (d) (A) is incorrect; (R) is correct. - 3. **Assertion:** Fe^{2+} is paramagnetic. **Reason:** Fe²⁺ contains four unpaired electrons #### Codes: - (a) Assertion and reason both are correct statements and reason is correct explanation for assertion. - (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion. - (c) Assertion is correct statement but reason is wrong statement. - (d) Assertion is wrong statement but reason is correct statement - 4. **Assertion:** Most of the trivalent lanthanide ions are coloured both in the solid state and in aqueous solution. **Reason:** The elements with xf electrons have a similar colour to those of (14 - x) f electrons #### Codes: - (a) Assertion and reason both are correct statements and reason is correct explanation for assertion. - (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion. - (c) Assertion is correct statement but reason is wrong statement. - (d) Assertion is wrong statement but reason is correct statement 5. Assertion: The correct order of oxidising power is: $VO_2^+ < VO < VO_2^+$. **Reason:** The oxidation state of Mn is +7. #### Codes: - (a) Assertion and reason both are correct statements and reason is correct explanation for assertion. - (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion. - (c) Assertion is correct statement but reason is wrong statement. - (d) Assertion is wrong statement but reason is correct statement. - 6.In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices **Assertion:** Cu²⁺ iodide is not known. **Reason:** Cu²⁺ oxidises 1- to iodine. #### Codes: - (a) Both assertion and reason are true, and reason is the correct explanation of the assertion. - (b) Both assertion and reason are true but reason is not the correct explanation of assertion. - (c) Assertion is not true but reason is true. - (d) Both assertion and reason are false. - 7.**Assertion**: Cuprous ion (Cu+) has unpaired electrons while cupric ion (Cu⁺⁺) does not. **Reason**: Cuprous ion (Cu⁺) is colourless whereas cupric ion (Cu⁺⁺) is blue in the aqueous solution. #### Codes: - (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. - (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. - (c) If the Assertion is correct but Reason is incorrect. - (d) If both the Assertion and Reason are incorrect. - 8. **Assertion**: Transition metals are good catalysts. **Reason**: V₂O₅ or Pt is used in the preparation of H₂SO₄ by contact process. #### Codes: - (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. - (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. - (c) If the Assertion is correct but Reason is incorrect. - (d) If both the Assertion and Reason are incorrect. - 9. Assertion: Transition metals show variable valence. **Reason:** Due to a large energy difference between the ns² and (n-1)d electrons. #### Codes: - a) Both assertion and reason are true, and the reason is the correct explanation of the assertion. - b) Both assertion and reason are true but the reason is not the correct explanation of assertion. - c) Assertion is not true but the reason is true. - d) Both assertion and reason are false. - 10.**Assertion:** It is not possible to obtain anhydrous ZnCl₂ by heating ZnCl₂.2H₂O. **Reason:** ZnCI₂.2H₂O. undergoes hydrolysis to produce Zn(OH)₂ and HCI. #### Codes: - a) Both assertion and reason are true, and the reason is the correct explanation of the assertion. - b) Both assertion and reason are true but the reason is not the correct explanation of assertion. - c) Assertion is not true but the reason is true. - d) Both assertion and reason are false. ## **Answers Key:** - 1. (a) First ionisation enthalpy of Cr is lower than that of Zn due to the stability of d^5 by losing one electron from outer s-orbital and the value for Zn is higher due to stable d^{10} s² configuration. - 2. (c) Cr^{2+} is reducing, while Mn^{3+} is oxidising when both have d^4 configuration. Cr^{2+} is reducing as its configuration changes from d^4 to d^3 , the latter having a half-filled t_{2g} level. On the contrary, the change from Mn^{3+} to Mn^{4+} results in the half-filled (d^5) configuration which has extra stability. Thus, (A) is correct but (R) is incorrect. - 3. **(a):** Fe has atomic number 26. So, its electronic configuration is $[Ar]3d^64s^2$. Fe²⁺ has electronic configuration $[Ar]3d^6$. It has four unpaired electrons and it is paramagnetic. - 4. **(b):** The lanthanide ions are coloured due to the partly filled f-orbitals which permits f -f transition. - 5. (d): The oxidation states of the given compounds are the following. $$VO_2^+: x+2(-2) = +1$$ $\Rightarrow x = +5$ VO $\Rightarrow x -2 = 0; x = +2$ $VO^{2+}: x + 1(-2) = +2$ $x = +4$ The correct order of oxidising power is: $$\mathsf{VO} < \mathsf{VO}^{2^+} < \mathsf{VO_2}^+$$ - 6. (a) Both assertion and reason are true, and reason is the correct explanation of the assertion. - 7. (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion. - 8. (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion. - 9. d) Both assertion and reason are false. - 10. a) Both assertion and reason are true, and the reason is the correct explanation of the assertion.