## QB365

## Important Questions - Chemical Kinetics

## 12th Standard CBSE

| Chemistry | Reg.No. : |  |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|--|
|-----------|-----------|--|--|--|--|--|--|

Time: 01:00:00 Hrs

Total Marks: 50

| Section | - A |  |
|---------|-----|--|
|---------|-----|--|

| 1) The unit of rate constant for a zero order reaction is                                                                                                                                       | 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (a) $\text{mol } L^{-1} \text{ s}^{-1}$ (b) $L \text{ mol}^{-1} \text{ s}^{-1}$ (c) $L^2 \text{mol}^{-1} \text{ s}^{-1}$ (d) $\text{s}^{-1}$                                                    |   |
| 2) The molecularity and order of the reaction 2 NO (g) + O $_2$ (g) $ ightarrow$ 2NO $_2$ (g) are respectively                                                                                  | 1 |
| (a) one and one (b)two and two (c)three and <mark>three</mark> (d)two an <mark>d three</mark>                                                                                                   |   |
| 3) The rate constant, the activation energy and the <mark>Arrchenius p</mark> arame <mark>ter of a</mark> chemical reaction at 25°C are 3.0                                                     | 1 |
| $	imes$ 10 $^{	ext{-4}}$ s $^{	ext{-1}}$ ,104.4 kJ mol $^{	ext{-1}}$ , and 6.0 $	imes$ 10 $^{14}$ s $^{	ext{-1}}$ respectively. The value of the rate constant as T $\longrightarrow \infty$ is |   |
| (a) $2.0 \times 10^{18} s^{-1}$ (b) $6.0 \times 10^{14} s^{-1}$ (c) Infinity (d) $3.6 \times 10^{30} s^{-1}$                                                                                    |   |
| 4) The chemical reactions in whi <mark>ch the reactions require h</mark> igh amount of activation energy are generally                                                                          | 1 |
| (a) slow (b) fast (c) instantaneous (d) none of these                                                                                                                                           |   |
| 5) In the presence of a cataly <mark>st, the</mark> heat evol <mark>ved or ab</mark> sorbed during the reaction                                                                                 | 1 |
| (a) increases (b) decrea <mark>ses (c) remains unchan</mark> ged (d) may increase or decrease                                                                                                   |   |
| 6) Zero order reactions (1) t $_{100\%}$ = [A] $_{0/k}$                                                                                                                                         | 1 |
| 7) Linear plot with -ve slope and intercept (2) Conc.[A] vs time t for zero order                                                                                                               | 1 |
| 8) Second half life or first order reaction (3) is same as the first                                                                                                                            | 1 |
| 9) Diamond (4) ordinarily rate of conversion is imperceptible                                                                                                                                   | 1 |
| 10) Order of a complex reaction is determined by (5) order of slowest step                                                                                                                      | 1 |
| Section - B                                                                                                                                                                                     |   |
| 11) What is physical significance of energy of activation? Explain with diagram.                                                                                                                | 2 |
| 12) Explain the terms: (i) Rate determining step of a reaction (ii) Molecularity of a reaction                                                                                                  | 2 |
| 13) Calculate the rate constant of a reaction at 293 K, given that: E $_{lpha}$ = 103 kJ mol $^{-1}$ , k = 7.87 $	imes$ 10 $^{-7}$ s $^{-1}$ at 273 K, R -                                      | 2 |
| 8.314 JK <sup>-1</sup> mol <sup>-1.</sup>                                                                                                                                                       |   |
| 14) Show that for a first order reaction, the time required for half the change (half-life period) is independent of                                                                            | 2 |
| initial concentration.                                                                                                                                                                          |   |
| (Or)                                                                                                                                                                                            |   |
| Derive the general form of expression for the half-life first order reaction.                                                                                                                   |   |
| 15) Show by using rate law, how much rate of reaction: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ will change if the volume of the                                                                  | 2 |
| reaction vessel is reduced to one-third of its initial value.                                                                                                                                   |   |

16) At 300 °C the thermal dissociation of HI is found to be 20%. What will be the equilibrium concentrations of  $H_2$  and  $I_2$  in the system  $H_2 + I_2 \rightleftharpoons 2HI$  at this temperature if the equilibrium concentration of HI in it be 0.96 mol  $L^{-1}$ ?

3

3

3

3

3

5

5

- 17) Show that in case of first order reaction, the time required for 99.9% of the reaction to complete is 10 times that required for half of the reaction to take place.  $[\log 2 = 0.301]$
- 18) What is the effect of temperature on the rate constant of reaction? How can this temperature effect on rate constant be represented quantitatively?
- 19) Calculate the half-life of a first order reaction from their rate constants given below: (a) 200 s<sup>-1</sup> (b) 2 min<sup>-1</sup> (c) 4 year<sup>-1</sup>
- 20) Express the rate of the following reaction in terms of different reactants and products: $4NH_3(g)+5O_2(g)$   $\longrightarrow 4NO(g)+6H_2O(g)$  If the rate of formation of NO is  $3.6\times 10^{-3}$  mol L<sup>-1</sup>s<sup>-1</sup>,calculate (i)the rate of disappearance of NH<sub>3</sub> (ii)rate of formation of H<sub>2</sub>O.

## Section - D

- 21) (a) Define the following: (i) Order of a reaction (ii) Elementary step in a reaction (b) A first order reaction has a rate constant value of 0.00510 min<sup>-1</sup>. If we begin with 0.10 M concentration of the reactant, how much of the reactant will remain after 3.0 hours?
- 22) (a) Distinguish between molecularity an order of a reaction.
  - (b) The activation energy for the reaction

$$2HI(g) \rightarrow H_2\left(g\right) + I_2(g)$$

is 209.5 kJ mol<sup>-1</sup> at 581 K. C<mark>alcul</mark>ate the fraction of molecules having energy equal to or greater than activation energy.

$$[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}]$$

23) The half time of first order decomposition of nitramide is 2.1 hour at  $15^{\circ}$ C.  $NH_2NO_2(aq) \longrightarrow N_2O(g) + H_2O(I)$  If 6.2 g of  $MH_2NO_2$  is allowed to decompose, calculate (i) time taken for  $NH_2NO_2$  to decompose 99% and (ii) volume of dry  $N_2O$  produced at this point, measured at STP.

\*\*\*\*\*\*\*\*\*\*