QB365

Important Questions - Electrochemistry

12th Standard CBSE

Chemistry

Reg.No.:

Time: 05:30:00 Hrs		
Sectio	n - A	
1) What will be the e.m.f of the given cell ? Pt \mid	$H_2(P_1) H^+(aq) H_2(P_2) Pt$	1
(a) $\frac{RT}{F}In\frac{P_1}{P_2}$ (b) $\frac{RT}{2F}In\frac{P_1}{P_2}$ (c) $\frac{RT}{F}In\frac{P_2}{P_1}$		
2) Using the data given below find out the stro	ongest reducing agent.	1
$E_{Cr_2O_7^{2-}/Cr^{3+}}^{\Theta} = 1.33V$, $E_{Cl_2/Cl^{-}}^{\Theta} = 1.3e$	$6VE_{MnO_4^-/Mn^{2+}}^{\Theta} = 1.51V$, $E_{Cr}^{\Theta_{3^+/Cr}} = -0.74V$	
(a) Cl^{-} (b) Cr (c) Cr^{3+} (d) Mn^{2+}	1-10'	
3) In the electrolysis of aqueous sodium chlor	i <mark>de solut</mark> ion w <mark>hich of the</mark> half cell reaction will occur at anode?	1
(a) $Na^{+}(aq) + e^{-} \rightarrow Na(s); E_{cell}^{\Theta} = -2.71$	V (b) $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^-; E_{cell}^{\ominus} = 1.23V$	
(c) $H^+(aq) + e^- \rightarrow \frac{1}{2}H_2(g); E_{cell}^{\Theta} = 0.00V$	(d) $Cl^{-}(aq) \rightarrow \frac{1}{2}Cl_{2}(g) + e^{-}; E_{cell}^{\Theta} = 1.36V$	
4) Molar conductivity of ionic solution depend	s on	1
(a) temperature (b) dis <mark>tance</mark> between e <mark>l</mark>	ectrodes (c) concentration of electrolytes in solution	
(d) surface area of electrodes	O) IIII	
5) The weight of silver (at.wt.=108) displaced I	by a quantity of electricity which displaces 5600 mL of O ₂ at STP will	1
be	Mille	
(a) 5.4 g (b) 10.8 g (c) 54.0 g (d) 108	3.0 g	
6) Mercury cell	(1)	1
	does not involve any ion in solution and is used in hearing aids	
7) Au ³⁺	(2) metal ion which is an oxidising agent	1
8) Br-	(3) anion that can be oxidised by Au ³⁺	1
9) F ⁻	(4) anion which is the weakest reducing agent	1
10) E ⁰ (Fe ³⁺ , Fe)	(5) - 0.04 V	1
Sectio	n - B	
11) Explain how rusting of iron is envisaged as	setting up of an electrochemical cell.	2
12) Calculate the equilibrium constant for the following reaction at 298 K: $Cu(s) + Cl_2(g) \rightarrow CuCl_2(aq)$		2
$R = 8.314 JK^{-1}mol^{-1}, E^{o}_{Cu^{2+}/Cu} = 0.34V$	$E_{\frac{1}{2}Cl_2/Cl^-}^o = 1.36V, 1F = 96500 Cmol^{-1}$	
13) The same quantity of electrical charge deposited 0.583 g of Ag when passed through		2
$AgNO_{3,}AuCl_{3}solution. Calculatetheweight$	of gold formed. (At weight of Au=197 g mol ⁻¹).	
14) Calculate the emf of the cell in which the f	ollowing reaction takes place	2
$Ni(s) + 2Ag^{+}(0.002M) \rightarrow Ni^{2+}(0.160M) + 2Ag^{+}(0.160M)$	$2Ag(s)$ Given that E^{o}_{cell} =1.05V	

15) Copper is conducting as such while copper sulphate is conducting only in molten state or in aqueous solution. Explain

Section - C

- For a cell: $Ag(s) \left| AgNO_3(0.01M) \right| \left| AgNO_3(1.0M) \right| Ag(s)$ (i) Calculate the e.m.f. of the cell at 25°C. (ii) Write the net cell reaction. (iii) Will the cell generate e.m.f. when two concentrations become equal?
- 3

3

- 17) Why blue colour of copper sulphate solution gets discharged when zine rod is dipped in it? Given $E^0_{Cu^{2+}/Cu} = -0.34V$, $E^0_{Zn^{2+}/Zn} = -0.76V$
- _
- 18) What pressure of H₂ would be required to make e.m.f. of the hydrogen electrode zero in pure water at 25°C?
- 3

19) Calculate e.m.f. of the following cell at 298 K:

$$2Cr(s)+3Fe^{2+}(0.1M) \rightarrow 2Cr^{3+}(0.01M)+3Fe(s)$$

$$E^{\circ} (Cr^{3+} | Cr) = -0.74$$

$$E^{\circ} \Big(Fe^{2+} \, | \, Fe \Big) = -0.44 \text{V}$$

20) A 100W and 110 V incandescent lamp is connected in series with an electrolytic cell containing CdSO₄ solution. What mass of cadmium will be deposited at the cathode after 4 hrs of electricity?

3

Section - D

21) Consider the figure given below and answer the questions (i) to (iv) that follow.

5

- (i) Redraw the diagram to show the direction of electron flow.
- (ii) Is silver plate anode or cathode?
- (iii) What will happen if the salt bridge is removed?
- (iv) When will the cell stop functioning
- (v) How will concentration of Zn²⁺ ions and Ag⁺ ions be affected when the cell functions
- (vi) How will the concentration of Zn²⁺ ions and Ag⁺ ions be affected after the cell becomes dead?
- 22) Calculate the standard electrode potential of Cu⁺/Cu half cell. Given that the standard reduction potentials of Cu²⁺/Cu and Cu²⁺/Cu are 0.337 V and 0.153 V respectively.

5

5

23) Two students use same stock solution of $ZnSO_4$ and a solution of $CuSO_4$. The e.m.f. of one cell is 0.03 V higher than the other. The concentration of $CuSO_4$ in the cell with higher e.m.f. value is 0.5 M. Find out the concentration of $CuSO_4$ in the other cell (2.303 RT/F = 0.06)
