QB365

Important Questions - Thermodynamics

11th Standard CBSE

Physics Reg.No.:			

Time: 01:00:00 Hrs

Total Marks: 50

Section-A	otat Marks . 50
1) A refrigerator is to maintain eatables kept inside at 10°C. If room temperature is 36° C, then calculate the coefficient of performance.	1
2) Temperature in the freezer of a refrigerator is being maintained at -13° C and room temperature on a particular day was 42° C. Calculate the coefficient of performance the refrigerator.	e of 1
3) Is reversible process possible in nature?	
	1
4) On what factors, the efficiency of a Carnot engine depends?	1
5) If the temperature of the sink is increased, what will happen to the efficiency of Carnot engine?	1
6) Find the efficiency of the Carnot engine working between boiling point and freezing point of water.	1
7) Which thermodynamic law put restrictions on the complete conversion of heat into work?	1
8) A steam engine delivers 5.4 X 10 ⁸ J of work per min and services 3.6 X 10 ⁹ J of heat per min from its boiler.	1
What is the efficiency of engine?	
9) A steam engine delivers 5.4 X 10 ⁸ J of work per min and services 3.6 X 10 ⁹ J of heat per min from its boiler.	1
How much heat is wasted per min?	
10) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at 827° C and exhausts it to a sink at 27° C.	1
How much work does it perform? Section-B	
11) A Carnot engine takes in a thousand kilocalories of heat from a reservoir at 827° C and exhausts it to a sink at 27° C.	2
What is the efficiency of the engine?	2
12) A person of mass 60 kg wants to lose 5 kg by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1kg of fat	is 2
burnt on expending 7000 kcal calories, how many times must be go up and down to reduce his weight by 5 kg?	15 2
13) What amount of heat must be supplied to 2.0 × 10 ⁻² kg of nitrogen (at room temperature) to raise its temperature by 45°C at constant	2
pressure? (Molecular mass of $N_2 = 28$, $R = 8.3$ J mol ⁻¹ K^{-1})	-
14) A geyser heats water flowing at the rate of 3.0 L/min from 27 °C to 77°C.If the geyser operates on a gas burner, what is the rate of	2
consumption of the fuel if its heat of combustion is 4.0×10^4 J/g?	_
15) Consider a Carnot cycle operating between T ₁ =500K and T ₂ =300K producing 1kJ of mechanical work per cycle. Find the heat transferred to the engine by the reservo	irs. 2
16) Under what condition, an ideal Carnot engine has 100% efficiency?	2
17) The efficiency of a heat engine is more in hilly area than in plain.Explain it.	2
18) Is the coefficient of performance of a refrigerator, a constant quantity?	2
19) Calculate the work done for adiabatic expansion of a gas.	2
20) A Carnot engine absorbs 6 X 10 ⁵ cal at 227 ° C. Calculate work done per cycle by the engine if its sink is maintained at 127° C.	2
Section-C	2
21) Give an example of each of given below	5
Isobaric process	
22) Give an example of each of given below	5
Isochoric process	
23) A cylinder containing one gram molecule of the gas was compressed adiabatically the work done and heat produced in the gas. Take γ as 1.5	5
24) A Carnot cycle is performed by 1 mole of air (r = 1.4) initially at 327° C. Each stage represents a compression or expansion in the ratio 1:6 Calculate network done duri	ng 5
each side	
Take R = 8.31 J/ mol ^{-K}	

Section-A	
1) 10.9	1
2) 4.73	1
3) A reversible process is never possible in nature because of dissipative forces and condition for a quasi-static process is not practically possible.	1
4) The efficiency of a carnot engine depends, on the temperature of source of heat and the sink.	1
5) Efficiency, $\eta = 1 - \frac{T_2}{T_1}$ By increasing(T ₂), the efficiency of the Carnot engine will decrease.	1
1	-
6) Efficiency of Carnot engine, $\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{273K}{373K} = \frac{100}{373} = 0.268 = 26.8\%$	1

7) According to second law of thermodynamics, heat energy cannot converted into work completely. 1 8) 15% 9) 3 X 10⁹ J / min 10) 2.720 X 10⁵ cal Section-B 11) 72.72% 12) Here, m=60kg, $g=10m/s^2$, h=10mIn going up and down once, number of kilocalories burnt =(mgh+mgh/2) = $\frac{3}{2}$ mgh $= \frac{3}{2} \times \frac{60 \times 10 \times 10}{4.2 \times 1000} = \frac{15}{7} kcal$ Total number of kilocalories to be burnt for losing 5 kg of weight = $5 \times 7000 = 35000$ kcal $\div\,$ Number of times of the person has to go up and down the stairs $=\frac{35000}{15/7} = \frac{35 \times 7}{15} \times 10^3 = 16.3 \times 10^3 \quad times$ 13) Here, mass of gas, $m = 2 \times 10^{-2} \text{ kg} = 20 \text{ g}$ Rise in temperature, $\Delta T = 45^{\circ}C$ Heat required, $\Delta Q = ?$ Molecular mass, M = 28 Number of moles, $n = \frac{m}{n} = \frac{20}{28} = 0.714$ As nitrogen is a diatomic gas, molar specific heat at constant pressure is $C_p = \frac{1}{2}R = \frac{7}{2} \times 8.3J \quad mol^{-1}K^{-1}As \quad \Delta Q = nC_p\Delta T : \quad \Delta Q = 0.714 \times \frac{7}{2} \times 8.3 \times 45J = 933.4$ 14) Here, volume of water heated = 3.0 L/min 2 Mass of water heated, m = 3000 g/min Rise in temperature, $\Delta T = 77 - 27 = 50^{\circ}C$ Specific heat of water, C = 4.2 J g^{-1} $^{\circ}C^{-1}$ Amount of heat used, $\Delta Q = mC\Delta T = 3000 \times 4.2 \times 50 = 63 \times 10^4$ J/min Heat of combination = 4 $\, imes$ 10⁴ J/g Rate of combustion of fuel = $\frac{63 \times 10^4}{10^4}$ = 15.75g / min $\frac{Q_2}{Q_1} = \frac{T_2}{T_1} = \frac{3}{5} : 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1} \Rightarrow \frac{Q_1 - Q_2}{Q_1} = \frac{500 - 300}{500}$ 16) Efficiency of a Carnot engine is given by Where, T_2 = temperature of sink and T_1 = Temperature of sink source So for $\eta = 1$ or 100% $T_2 = 0$ K or heat is rejected into a sink at 0 K temperature. 17) Because in the hilly area, temp of surrounding is lower than that of plains. As $\eta = 1 - \frac{r_2}{r_1}$ 18) No, it is not constant quantity, as inside, temperature of the refrigerator decreases, it is coefficient of performance also decreases. 2 19) Consider (say μ mole) an ideal gas, which is undergoing an adiabatic expansion. Let the gas expands by an infinitesimally small volume dV, at pressure p, then the infinitesimally sm The net work done from an initial volume V₁ is given by $W = \int_{v_1}^{v_2} p dV$ $pV^{\gamma} = constant = Kp = \frac{K}{V^{\gamma}} = KV^{-\gamma} : \qquad W = \int_{V_1}^{V_2} (KV^{-\gamma}) dV = k \left[\frac{V^{-\gamma+1}}{-\gamma+1} \right]_{V_1}^{V_2} = \frac{KV_2^{-\gamma+1} - KV_1^{-\gamma+1}}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{-\gamma+1} - p_1 V_1^{\gamma} : V_2^{-\gamma+1} = \frac{1}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{-\gamma+1} - p_1 V_1^{\gamma} : V_2^{-\gamma+1} = \frac{1}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{-\gamma+1} - p_1 V_1^{\gamma} : V_2^{-\gamma+1} = \frac{1}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{-\gamma+1} - p_1 V_1^{\gamma} : V_2^{-\gamma+1} = \frac{1}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{-\gamma+1} - p_1 V_1^{\gamma} : V_2^{-\gamma+1} = \frac{1}{(1-\gamma)} For \quad an \quad adiabatic \quad process, \\ K = p_1 V_1^{\gamma} = p_2 V_2^{\gamma} : V_2^{\gamma}$ 20) 5.04 X 10⁵ Section-C 21) Isobaric process Cooking in an open lid container. 22) Isochoric process Cooking in a pressure cooker. 23)

 $T_f = 97^{\circ}C = 97 + 273 = 370K$, $\gamma = 1.5$ Work done in adiabatic compression is given by

Given, $T_i = 27^0 C = 27 + 273 = 300 K$

24) 457232 J