OB365

Important Questions - Probabitily

11th Standard CBSE

Mathematics R	eg.No. :					
----------------------	----------	--	--	--	--	--

Time: 01:00:00 Hrs

Total Marks: 50

2

2

2

2

2

2

3

3

3

3

Section-A

- 1) A coin tossed. If it shows tail, we draw a ball from a box which contains 2 red and 3 black balls. If it shows for this experiment.
- 2) In any school examination, probability that Mohan passed in Chemistry is $\frac{1}{3}$ and the probability that he passed in Physics is $\frac{2}{5}$. If the probability of passing in both subjects is $\frac{1}{6}$, then what is the probability that Mohan will pass in atleast one of these subjects?
- 3) A bag contains 5 green and 7 red balls, Two balls are drawn. What is the probability that one is green and other is red?
- 4) Two cards are drawn without replacement from a well-shuffled pack of 52 cards. What is the probability that one is red queen and the order is a king of black colour?
- 5) If A and B are mutually exclusive events, such that P(A)=0.28 and P(B)=0.38, then $P(A'\cap B')$
- 6) Suppose that each child born is equally likely to be a boy or a girl. Consider a family with exactly three children. Write each of the following events as a set and find its probability.
 - (a) The event that exactly one child is a girl.
 - (b) The event that atleast two children are girls.
 - (c) The event that no child is a girl.

Section-B

- 7) A and B are two events that P(A) = 0.54, P(B) = 0.69 and $P(A \cap B)$ = 0.35. Find $P(A' \cap B')$
- 8) Two dice are thrown once. The events A, B, E are as follows
 - A: Getting an even number on the first die.
 - B: Getting on the odd number on the first die.
 - E: Getting the sum of numbers on the dice≥10.
 - Describe the events
 - iii)E
- 9) If the odds against the occurrence of an event are 4:7;, find the probability of occurrence of the event.
- 10) Three coins are tossed once. Find the probability of getting at least 2 heads
- 11) A card is drawn from an ordinary pack and a gambler bets that it is spade or an ace. What are the odds against the winning his bet?

12) Probability that Ram passed in Mathematics is $\frac{2}{3}$ and the probability that he passed in English is $\frac{4}{9}$. If the probability of passing in both subjects is $\frac{1}{4}$, then what is the probability that Ram will pass in atleast one of these subjects?

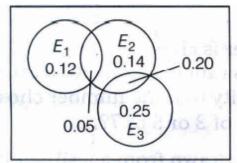
3

2

2

2

2


2

Section-C

- 13) In a large metropolitan area, the probabilities are 0.87,0.36,0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either anyone or both kinds of sets?
- 14) Let A, B and C be three events. If the probability of occurring exactly one event out of A and B is 1-x, out of B and C is 1-2x, out of C and A is 1-x, and that of occurring three events simultaneously is x^2 , then prove that the probability that at least one out of A, B, C will occur is greater than 1/2.

- 15) Three coins are tossed once. Find the probability of getting 2 heads
- 16) The probabilities of three events shown in the Venn diagram is shown below

Determine

 $P(E_2)$

17) The probabilities of three events shown in the Venn diagram is shown below Determine

 $P(E_1\cap ar{E}_2)$

Section-A

- 1) Let the balls in the box be represented by R_1, R_2 , and B_1, B_2, B_3 {(H,1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, R_1), (T, R_2), (T, R_2), (T, R_3)}
- 2) $\frac{17}{30}$
- 3) $\frac{35}{36}$
- 4) Number of ways of possible outcomes = 26 x 51

We know that, there are 2 red queen and 2 kings of black colour in apack of 52 cards Number of favourable outcomes

=
$${}^2C_1 \times {}^2C_1$$
 = 2 x 2 = 4

Hence, required probability = $\frac{4}{26 \times 51} = \frac{2}{663}$

5) $P(A'\cap B')=P(A\cup B)'=1-P(A\cup B)$ Ans.0.34

3

3

3

3

Then,
$$E_1$$
={BBG,BGB,GBB}

$$\Rightarrow \qquad P(E_1) = rac{3}{8}$$

(b) Let E₂ denotes the event that atleast two children are girls.

Then,
$$E_{2} = \{BGG,GBG,GGB,GGG\}$$

$$\Rightarrow P(E_2) = \frac{4}{8} = \frac{1}{2}$$

(c) Let E₃ denotes the event that no child is a girl.

then,
$$E_3 = \{BBB\}$$

$$\Rightarrow \qquad P(E_3) = rac{1}{8}$$

Section-B

7)
$$P(A' \cap B') = P((A \cup B)') = 1 - P(A \cup B)$$

= 1 - 0.88 = 0.12

8) On throwing of two dice, we have sample space

$$\mathsf{s=}\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),$$

$$(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),$$

$$(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),$$

$$(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),$$

$$(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),$$

$$(6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \}$$

E: Getting the sum of numbers on the dice≥10

E' Getting the sum of numbers on the dice<10

$$=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),$$

$$(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),$$

$$(4,1), (4,2), (4,3), (4,4), (4,5), (5,1),$$

9) We know that, if odds against of an event are n:m, then

probability of occurrence of this event is
$$\frac{m}{m+n}$$

$$\therefore$$
 Required probability = $\frac{7}{7+4} = \frac{7}{11}$

10) In random experiment of tossing three coins, the sample space is

$$S = (HHH, HHT, HTH, THH, HTT, THT, TTH, TTT)$$

$$\Rightarrow$$
 n(S) = 8

Let E₂ be the event of getting atleast 2 heads.

Then, outcome favourable to E₂ are {HHT, HTH, THH, and HHH}

Thus,
$$n(E_2) = 4$$

$$P(E_2) = rac{n(E_2)}{n(S)} = rac{4}{8} = rac{1}{2}$$

3

Let be the sample space associated with the given random experiment. Then, n(S) = 52

Now, let A be the event of getting a spade and B be the event of getting an ace. $A \cap B$ denote the event of getting an ace of spade.

Then,

$$n(A) = 13 \text{ and } n(B) = 4$$

$$n(A \cap B) = 1$$

$$P(A) = \frac{13}{52}; P(B) = \frac{4}{52}$$
 and $P(A \cap B) = \frac{1}{52}$

Now, P(winning the bet) = P(getting a spade or an ace)

$$= P(A \cap B) = P(A) + P(B) - P(A \cap B)$$

$$=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}$$

 $=\frac{\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}}{\text{P(not winning the bet)}}=1-\frac{4}{13}=\frac{9}{13}$

Hence, odds against the winning his bet

$$=rac{P(not \ winning \ the \ bet)}{P(winning \ the \ bet)}=rac{rac{9}{13}}{rac{4}{13}}=rac{9}{4}=9:4$$

12)

Let M be the event that Ram passed in Mathematics, E be the event that Ram passed in English and

 $M \cap E$ be the event that Ram passed in both subjects

Now, P(Ram pass in atleast one subject) =
$$P(M \cup E)$$

= $P(M) + P(E) - P(M \cap E) = \frac{2}{3} + \frac{4}{9} - \frac{1}{4} = \frac{24+16-9}{36} = \frac{31}{36}$
Section-C

13)

Let A be the event that the family owns a colour television set and B be the event that the family owns a black and white television. Then, we have P(A)=0.87, P(B)=0.36, $P(A \cap B)=0.30$

Ans. 0.93

14)
$$P(A \cup B \cup C) = \frac{3-4x}{2} + x^2 = x^2 - 2x + \frac{3}{2}$$

= $(x-1)^2 + \frac{1}{2} > \frac{1}{2}$

15)
$$\frac{3}{8}$$