QB365

Important Questions - Polynomials

10th Standard CBSE

Maths Reg.	No.:
------------	------

Time: 01:00:00 Hrs

Total Marks: 50

1

1

2

2

2

2

2

2

2

2

Section - A

- 1) If α and β are the roots of ax^2 bx + c = 0 ($a \neq 0$), then calculate $\alpha + \beta$.
- 2) If sum of the zeroes of the quadatic polynomial $3x^2$ kx + 6 is 3, then find the value of k.
- 3) If -1 is a zero of the polynomial $f(x) = x^2 7x 8$, then calculate the other zero.
- 4) Find a quadratic polynomial with zeroes $3 + \sqrt{2}$ and $3 \sqrt{2}$.
- 5) Find the zeroes of the quadratic polynomial $3x^2+11x-4$, then find the value of $\frac{m}{n}+\frac{n}{m}$.
- 6) The sum and the product of a zeroes of the polynomial $f(x)=4x^2-27x+3k^2$ are equal. Find the value of k.
- 7) Find all the zeroes of $f(x) = x^2 2x$
- 8) Find the value of k, if 1 is a zero of the polynomial $p(x) = kx^2 4x + k$.
- 9) If one zero of the polynomial $2x^2 + 3x + \lambda$ is $\frac{1}{2}$, find the value of λ and other zero.
- 10) Find the value for k for which $x^4 + 10x^3 + 25x^2 + 15x + k$ is exactly divisible by x + 7.

Section - B

11) Write the degree of the following polynomials.

(i)
$$7q^6 + 4q^2 + \frac{3}{2} + q - 8$$

- (ii) x³-3
- 12) If a and β are the zeroes of the quadratic polynomial $f(x)=ax^{2+bx+c}$, then find the difference between the zeroes. $(\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\beta \quad or \quad (\alpha-\beta)=\pm\sqrt{(\alpha+\beta)^2-4\alpha\beta}$
- 13) Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and their coefficients. $q(x) = \sqrt{3x^2 + 10x + 7\sqrt{3}}$
- 14) Find all the zeroes of $2x^4$ - $3x^3$ - $3x^2$ +6x-2, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.
- 15) Divide the polynomial p(x) by the polynomial g(x) and find quotient and remainder in each of the following.
 - (i) $p(x)=x^3-3x^2+5x-3$, $g(x)=x^2-2$
 - (ii) $p(x)=x^4-3x^2+4x+5$, $g(x)=x^2+1-x$
 - (iii) $p(x)=x^4-5x+6$, $g(x)=2-x^2$
- 16) If zeroes of the polynomial $x^2 + 4x + 2a$ are α and $\frac{2}{\alpha}$, then find the value of a.
- 17) If the sum and product of the zeroes of the polynomial ax^2 5x + c is equal to 10 each, find the value of 'a' and 'c'.
- 18) If α and β are the zeroes of the polynomial $6y^2$ 7y + 2, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

- 19) Show that $\frac{1}{2}$ and $\frac{-3}{2}$ are the zeroes of the polynomial $4x^2 + 4x 3$ and verify the relationship between zeroes and coefficients of the polynomial.
- 20) Find the zeroes of the quadratic polynomial $5x^2 + 8x 4$ and verify the relationship between the zeroes and the coefficients of the polynomial.

2

2

Section - C

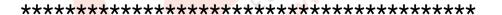
21) Identify the type of the polynomials given below:

5

5

(i)
$$f(p) = 3 - p^2 + \sqrt{7}p$$

(ii)
$$p(v) = \sqrt{3v^4} - \frac{2}{3}v + 7$$


(iii)
$$q(x) = \frac{\sqrt{2}}{5}x^3 + 1$$

22) Ajay, Ankit and Vijay respectively calculated the following polynomials with sum of the zeroes as 18 and product of the zeroes as 81.

$$x^2$$
-18x+81, x^2 +18x-81, $2x^2$ -9x-81

They discussed their solutions among themselves and point out mistakes in the calculations.

- (i) Whose calculation is correct?
- (ii) What are the values depict here?
- 23) Polynomial $x^4 + 7x^3 + 7x^2 + px + q$ is exactly divisible by $x^2 + 7x + 12$, then find the value of p and q.
- 24) If α and β are the zeroes of the polynomial p(x) = $2x^2 + 5x + k$ satisfying the relation, $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$, then find the value of k.

