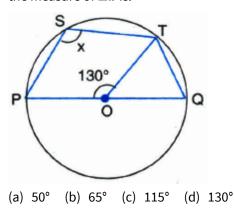
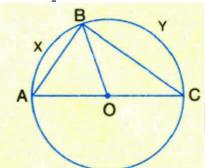
QB365


Important Questions - Circles

9th Standard CBSE

Mathematics

Reg.No.:

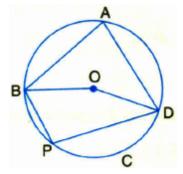

Time: 01:00:00 Hrs	
To	otal Marks : 50
Section-A	
1) The path traced by the tip of the second's hand is a (a) circle (b) square (c) rectangle (d) straight line	1
2) The wheels of a vehicle are in	1
(a) rectangular (b) triangular (c) circular shape (d) trapezoidal	
3) In the figure, $\angle AOB = \angle COD = 60^\circ$, chord CD = 4 cm and 0 is the centre of the circle. Length of chord will be: (a) 4 cm (b) 8 cm (c) 2 cm (d) 6 cm.	d AB
(a) 4 cm (b) 8 cm (c) 2 cm (d) 6 cm.	
4) The perpendicular from the centre of a circle bisects the:	Ī
(a) circle (b) circumference (c) chord (d) radius.	
5) The length of the chord of a circle, of radius 13 cm, at a distance of 5 cm from the centre is	1
(a) 12 cm (b) 18 cm (c) 20 cm (d) 24 cm	
6) The length of the perpendicular from the centre of a circle of radius 5 cm on a chord of it of length 8 cm i (a) 6 cm (b) 5 cm (c) 4 cm (d) 3 cm	ís 1
7) AD is a diameter of a circle and AB is a chord. If AD = 34 cm and AB = 30 cm, the distance of AB from the confidence of the circle is: (a) 17 cm (b) 15 cm (c) 4 cm (d) 8 cm	entre 1
8) How many circles can pass through three given non-collinear points?	,
(a) one and only one (b) two (c) three (d) infinitely many.	•
9) The length of a chord of a circle is equal to its radius. Find the measure of the angle subtended by that compared the segment.(a) 30° (b) 60° (c) 45° (d) none of these.	hord in 1

Section-B

11) In the figure, AOC is a diameter of the circle and arc AXB = $\frac{1}{2}$ arc BYC. Find $\angle BOC$.

12) Find the length of a chord which is at a distance of 3 cm from the centre of a circle whose radius is 5 cm.

2


13) Find the length of a chord of a circle which is at a distance of 4 cm from the centre of the circle with radius 5 cm.

2

14) Two circles of radii 10 cm and 8 cm intersect and the length of the common chord is 12 cm. Find the distance between their centres.

2

15) ABCD Is a cyclic quadrilateral. 0 is the centre of the circle. If $\angle BOD = 160^{\circ}$, find $\angle BPD$.

16) PQRS is a cyclic quadrilateral, in which $\angle P=2x^\circ$, $\angle Q=y^\circ$, $\angle R=3x^\circ$ and $\angle S=2y^\circ$. Find the values of x and y.

2

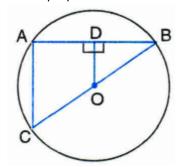
17) In the adjoining figure is a circle with centre O. If $\angle BAC = 60^{\circ}$ and $\angle DCB = 100^{\circ}$, then find $\angle DBC$.

2

- 18) Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
- 2 2

19) Suppose you are given a circle. Give a construction to find its centre.

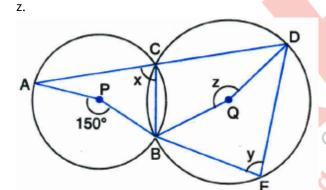
20) If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.


Section-C

- 21) Two chords PQ and RS of a circle are parallel to each other and AB is the perpendicular bisector of PQ. Without using any construction, prove that AB bisects RS.
- 20

2

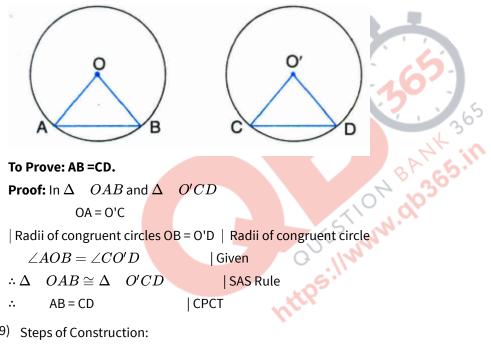
22) OD is perpendicular to chord AB of a circle whose centre is O. If BC is a diameter, prove that CA = 20D.

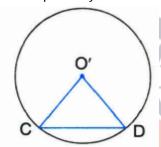


- 23) In figure, AB and AC are two equal chords of a circle whose centre is O. If OD \perp AB and OE \perp AC, prove that ADE is an isosceles triangle and ∠ABC=∠ACB

20

- 24) P and Q are centres of the two circles which intersect at B and C. ACD is a straight line. Find the values of x, y,
- 20

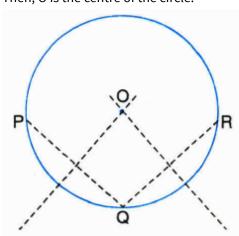



Section-A

1) (a) circle	1
2) (c) circular shape	1
3) (a) 4 cm	1
4) (c) chord	1
5) (d) 24 cm	1
6) (d) 3 cm	1
7) (d) 8 cm	1
8) (a) one and only one	1
9) (a) 30°	1
10) (c) 115°	1

- 11) 120°
- 12) 8 cm
- 13) 6 cm
- 14) $(8+2\sqrt{7}) cm$
- 15) 100°
- 16) 36,60
- 17) 20°
- 18)

Given: $\angle AOB$ and $\angle CO'D$ are the two equal angles subtended by the chords AB and CD of two congruent circles with centres O and O' respectively.



$$\angle AOB = \angle CO'D$$

$$\therefore \Delta \quad OAB \cong \Delta \quad O'CL$$

- 19) Steps of Construction:
 - (i) Take any three points P, Q and R on the circle.
 - (ii) Join PQ and QR.
 - (iii) Draw the perpendicular bisectors of PQ and QR. Let these intersect at O.

Then, O is the centre of the circle.

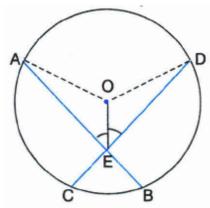
2

2

2

2

2


2

2

2

Given: Two equal chords AB and CD of a circle with centre 0 intersect within the circle. Their point of intersection is E.

To Prove: $\angle OEA = \angle OED$.

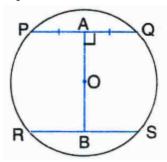
Construction: Join OA and OD.

Proof: In ΔOEA and ΔOED ,

OE=OE I Common

OA=OD I Radii of a circle

AE=DE


| Proved in Example 2 above

- $\Delta OEA \cong \Delta OED$ I SSS Rule
- \therefore $\angle OEA = \angle OED$.

Section-C

21)

Given: Two chords PQ and RS of a circle are parallel to each other and AB is the perpendicular bisector of PQ.

To Prove: AB bisects RS.

Proof: ∵ AB is the perpendicular bisector

of PQ

- : AB passes through the centre O.
 - : The perpendicular bisector of a chord of a circle passes through the centre
- $\because PQ \parallel RS$
- ∵ AB⊥RS
- : AB bisects RS.
 - : The perpendicular drawn from the centre of a circle bisects the chord

20

20

To Prove: CA=20D

Proof: OD ⊥AB

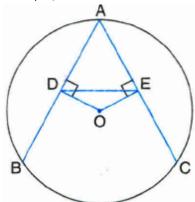
∴ D is the mid-point of AB

|The perpendicular drawn from the centre of a circle to a chord bisects the chord.

In ΔBAC ,

 $\because OD \parallel AC$ I By mid-point theorem

and
$$OD = \frac{1}{2}AC$$


- ⇒ CA=2 OD
- 23) **Given:** In figure, AB and AC are two equal chords of a circle whose centre is O. OD \perp AB and OE \perp AC.

To Prove: ADE is an isosceles triangle.

Proof: ∵ AB=AC

OD=OE

| Equal chords of a circle are equidistant from the centre of a circle

 \therefore In $\triangle ODE$,

$$\angle ODE = \angle OED$$

Angle opposite to equal sides of a triangle are equal

$$\begin{array}{ll} \Rightarrow & 90° - \angle ODE = 90° - \angle OED \\ \Rightarrow & \angle ODA - \angle ODE = \angle OEA - \angle OED \\ \Rightarrow & \angle ADE = \angle AED \\ \therefore & \mathsf{AD=AE} \end{array}$$

| Sides opposite to equal angles of a triangle are equal

 $\therefore \Delta ADE$ is an isosceles triangle.

Also, OD = OE

∴ AB =AC

(chords equidistant from centre are equal)

$$2x = 150^{\circ}$$

| The angle subtended by an arc of a circle at the centre is twice the angle subtended by it at any point on the remaining part of the circle

$$\Rightarrow x = 75^{\circ} \qquad \dots (1)$$

$$x + \angle BCD = 180^{\circ}$$

$$\Rightarrow$$
 75° + $\angle BCD = 180$ °

$$\Rightarrow$$
 $\angle BCD = 105^{\circ}$

∵ BEDC is a cyclic quadrilateral

$$\therefore \angle BCD + \angle BED = 180^{\circ}$$

I Opposite angles of a cyclic quadrilateral are supplementary

...(3)

$$\Rightarrow$$
 $105\degree + y = 180\degree$ $y = 75\degree$ (2) $z = 2y$

| The angle subtended by an arc of a circle at the centre is twice the angle subtended by it at any point on the remaining part of the circle

$$\Rightarrow$$
 $z=2 imes75\degree=150\degree$