QB365

Important Questions - Heron's Formula

9th Standard CBSE

Mathematics

Reg.No.:

Time: 01:00:00 Hrs	
Total Marks:	50
Section-A	
1) Base of a triangle =	1
(a) $\frac{2 imes Area}{Height}$ (b) $\frac{Area}{Height}$ (c) $\frac{Area}{2\ Height}$ (d) $\frac{Area}{4\ Height}$	
2) Area of an isosceles right triangle is 8 cm ² .Its hypotenuse is	1
(a) $\sqrt{32}$ cm (b) 4 cm (c) $4\sqrt{3}$ cm (d) $2\sqrt{6}$ cm	
3) Heron's formula is	1
(a) $\Delta = \sqrt{s(s+a)(s+b)(s+c)}$ (b) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$	
(c) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$, s=a+b+c (d) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$, 2s=a+b+c	
4) In an equilateral triangle of side 'a', the length of the altitude is	1
(a) $\frac{\sqrt{3}a}{4}$ (b) $\frac{\sqrt{3}a}{2}$ (c) $\sqrt{3}a$ (d) $2\sqrt{3}a$ 5) Area of a triangle =	
5) Area of a triangle =	1
(a) $\frac{1}{2} \times \text{Base} \times \text{Height}$ (b) $\text{Base} \times \text{Height}$ (c) $\frac{1}{3} \times \text{Base} \times \text{Height}$ (d) $\frac{1}{4} \times \text{Base} \times \text{Height}$	
6) The perimeter of a triangular plot is 16 m.lf the measures of its two sides are 5 m, and 6m, then find the third	1
side.	
(a) 2 m (b) 3 m (c) 5 m (d) 4 m	
7) The difference of semi-perimeter and the sides of Δ ABC are 8 cm, 7 cm, and 5 cm respectively.Its semi-	1
perimeter is	
(a) 10 cm (b) 5 cm (c) 15 cm (d) 20 cm	
8) Area of a quadrilateral =	1
(a) $rac{1}{2} imes$ a diagonal $ imes$ sum of the perpendicular on the diagonal	
(b) a diagonal $ imes$ sum of the perpendicular on the diagonal	
(c) $rac{1}{3} imes$ a diagonal $ imes$ sum of the perpendicular on the diagonal	
(d) $rac{1}{4} imes$ a diagonal $ imes$ sum of the perpendicular on the diagonal	
9) The sides of a triangular plot are in the ratio 4:5:6 and its perimeter is 150 cm. Then the sides are	1
(a) 4 cm, 5 cm, 6 cm (b) 40 cm, 50 cm, 60 cm (c) 8 cm, 10 cm, 12 cm (d) 120 cm, 150 cm, 180 cm	
10) The side of a square is 5 cm. Its perimeter is	1
(a) 5 cm (b) 20 cm (c) 25 cm (d) 10 cm.	

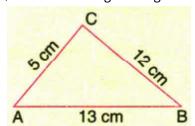
Section-B

2

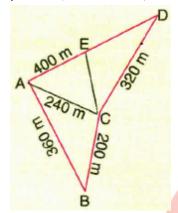
2

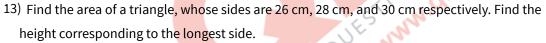
2

2


2

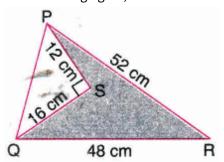
2


2


2

5

12) Kamla has a triangular field with sides 240 m, 200 m, 360 m, where she grew wheat. In another triangular field with sides 240 m, 320 m, 400 m adjacent to the previous field, she wanted to grow potatoes and onions. She divided the field in two parts by joining the mid-point of the longest side to the opposite vertex and grew potatoes in one part and onions in the other part. How much area (in hectares) has been used for wheat, potatoes, and onions? (I hectare = 10000 m²).


14) Find the area of a triangle whose sides are 6.5 cm. 7 cm and 7.5 cm.

- 15) The sides of a triangular plot are in the ratio 3: 5: 7 and its perimeter is 300 m. Find its area and the length of perpendicular drawn on the biggest side.
- 16) The unequal side of an isosceles triangle is 6 cm and its perimeter is 24 cm. Find its area.
- 17) Find the area of an isosceles triangle, whose equal sides are of length 15 cm each and third side is 12 cm.
- 18) Find the area of the quadrilateral ABCD where AB = 7 cm, BC = 6 cm, CD = 12 cm, DA = 15 cm and AC = 9 cm.
- 19) A triangle and a parallelogram have the same base and same area. If the sides of the triangle are 15 cm.14 cm and 13 cm and the parallelogram stands on the base 14 cm. find the height of the parallelogram.
- 20) Find the area of a right-angled triangle if the radius of its circumcircle is 3 cm and altitude drawn to the hypotenuse is 2 cm.

Section-C

21) Students of a school staged a rally for cleanliness campaigp. They walked through the lanes in two groups. One group walked through the lanes AB, BC and CA; while the other through AC, CD and DA. Then they cleaned the area enclosed within their lanes. If AB = 9 m, BC = 40 m, CD = 15 m, DA = 28 m and $\angle B = 90^{\circ}$, which group cleaned more area and by how much? Find the total area cleaned by the students.

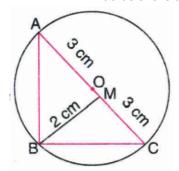
22) In the following figure, calculate the area of the shaded portion:

23) The cross- section of a canal is in the shape of a trapezium. If the canal is 12 m wide at the top and 8 m wide at the bottom and the area of its cross-section is 84 m^2 , determine its depth.

5

5

5


24) A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 15 cm, 14 cm, and 13 cm, and the parallelogram stands on the base 15 cm, find the height of the parallelogram.

Section-A

Section-A	
1) (a) $\frac{2 \times Area}{Height}$ 2) (a) $\sqrt{32}$ cm 3) (d) $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$, 2s=a+b+c 4) (b) $\frac{\sqrt{3}a}{2}$ 5) (a) $\frac{1}{2} \times \text{Base} \times \text{Height}$ 6) (c) 5 m 7) (d) 20 cm	1
2) (a) $\sqrt{32}$ cm	1
3) (d) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$, 2s=a+b+c	1
4) (b) $\frac{\sqrt{3}a}{2}$	1
5) (a) $\frac{1}{2} \times \text{Base} \times \text{Height}$	1
6) (c) 5 m	1
7) (d) 20 cm	1
8) (a) $\frac{1}{2} \times$ a diagonal \times sum of the perpendicular on the diagonal	1
9) (b) 40 cm, 50 cm, 60 cm	1
10) (b) 20 cm	1
Section-B	
11) 30 cm ^{2.}	2
12) 2.26 hectares (nearly), 1.92 hectares (nearly), 1.92 hectares (nearly)	2
13) 336 cm ² , 22.4 cm	2
14) 21 cm ²	2
15) $1500\sqrt{3}$ m ² , $\frac{150\sqrt{3}}{7}$ m	2
16) $18\sqrt{2}$ cm ²	2
17) $18\sqrt{21} \text{ cm}^2$	2
18) 74.97 cm ²	2
19) 6 cm	2

= Radius of the circumcircle = 3 cm

:. Hypotenuse AC = Diameter of the circle

=
$$2 \times Radius$$
 of the circumcircle

$$= 2 \times 3 = 6 \text{ cm}$$

Let BM be the perpendicular from B on AC.

- ∴ BM=2 cm
- ∴ Area of the right angled triangle ABC

$$=\frac{1}{2}\times Base \times Altitude$$

=
$$\frac{1}{2}$$
 × AC × BM = $\frac{1}{2}$ × 6× 2 = 6 cm².

Section-C

- 21) First group cleaned more area by 54m²; 306 m².
- 22) In right triangle PSQ, $PQ\frac{1}{2}^2 = PS^2 + QS^2$ |By Pythagoras Theorem

$$=(12)^2+(16)^2$$

$$\Rightarrow$$
 PQ = $\sqrt{400}$ = 20 cm

Now, for Δ PQR

a=20cm, b=48cm, c=52cm

$$\ \ \, \therefore \qquad \quad s = \tfrac{a+b+c}{2} = \tfrac{20+48+52}{2} = 60\,\mathrm{cm}$$

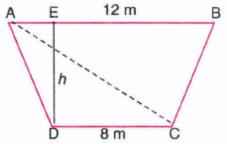
$$\therefore$$
 Area of Δ PQR $=\sqrt{s(s-a)(s-b)(s-c)}$

$$=\sqrt{60(60-20)(60-48)(60-52)}$$

$$=\sqrt{(60)(40)(12)(8)}$$

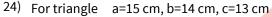
$$=\sqrt{\left(6 imes10
ight) \left(4 imes10
ight) \left(6 imes2
ight) \left(8
ight) }$$

$$=6\times10\times8=480\,\mathrm{cm^2}$$


Area of \triangle PSQ = $\frac{1}{2}$ ×Base×Altitude

$$=\frac{1}{2}\times16\times12=96$$
 cm²

 \therefore Area of the shaded portion =Area of \triangle PQR - Area of \triangle PSQ


5

Area of trapezium = 84 m^2

- \Rightarrow Area of Δ ABC +Area of Δ ADC = 84 m²
- $\Rightarrow \frac{1}{2}(AB)(DE) + \frac{1}{2}(DC)(DE) = 84$
- $\Rightarrow \frac{1}{2}$ (12)(h)+(8)(h)=84
- ⇒ 6h+4h=84
- ⇒ 10h=84
- \Rightarrow h= $\frac{84}{10}$ =8.4

Hence, the depth of the canal is 8.4 m.

$$s = rac{a+b+c}{2}s = rac{15+14+13}{2} = 21 {
m c m}$$

$$\therefore \text{ Area = } \sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{21(21-15)(21-14)(12-13)}$$

$$=\sqrt{21(6)(7)(8)}=84 \text{ cm}^2$$

Let the height of the parallelogram be h cm.

Then, area of the parallelogram = Base \times Height = 15 \times h = 15 cm²

According to the question, Area of the parallelogram = Area of the triangle

$$\Rightarrow$$
 15h = 84

$$\Rightarrow \frac{84}{15} = 5.6 \text{ cm}$$

Hence, the height of the parallelogram is 5.6 cm.

5