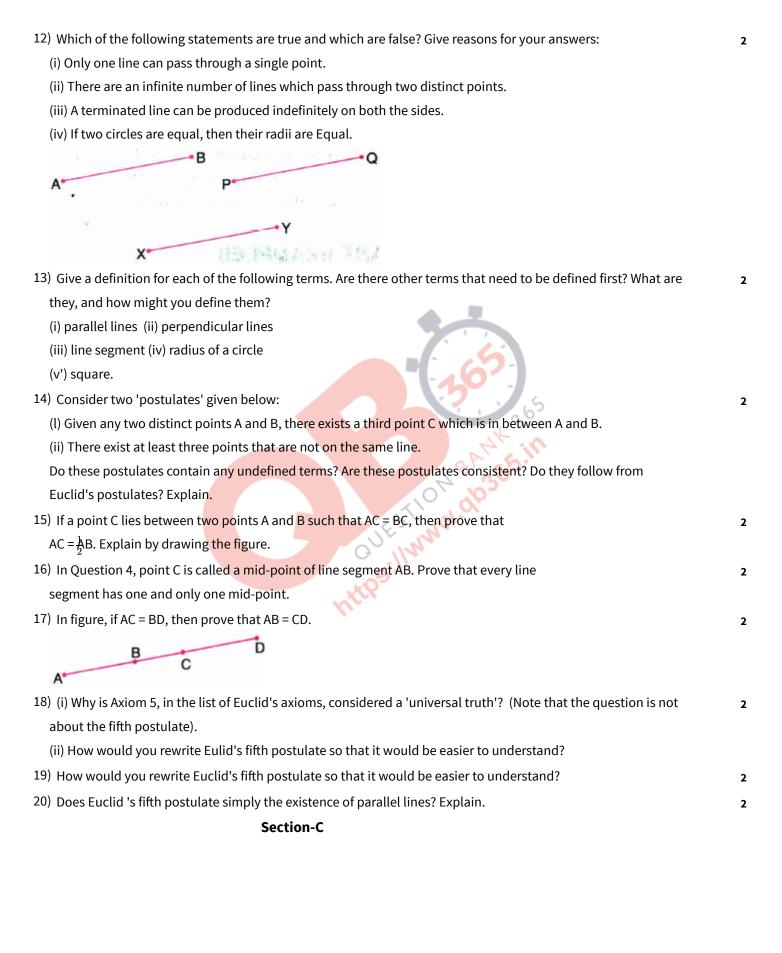
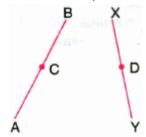
QB365

Important Questions - Introduction to Euclid's Geometry


9th Standard CBSE

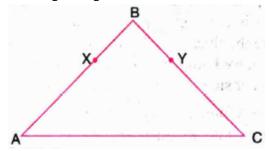
Mathematics Reg.No.:				
Time: 01:00:00 Hrs				
	Tota	l Marks	c · 50	
Section-A	Tota	l Mai Ks	3.30	
1) In ancient India, the shapes of altars used for household rituals were				1
(a) squares and circles (b) triangles and rectangles (c) trapeziums and phyramids				
(d) rectangles and squares				
2) Euclid belonged to the country				1
(a) Babylonia (b) Egypt (c) Greek (d) india				
3) The number of line segments determined by three collinear points is:				1
(a) two (b) Three (c) Only one (d) Four				
 (a) two (b) Three (c) Only one (d) Four 4) 'lines are parallel if they do not intersect' is stated in the form of: (a) an axiom (b) a definition (c) a postulate (d) a proof 5) A proof is required for: (a) postulate (b) aximo (c) theorem (d) definition 6) The things which coincide with one another are: 				1
(a) an axiom (b) a definition (c) a postulate (d) a proof				
5) A proof is required for:				1
5) A proof is required for: (a) postulate (b) aximo (c) theorem (d) definition 6) The things which coincide with one prother are:				
6) The things which coincide with one another are:				1
(a) equal to one another (b) un equal (c) double of same thing (d) triple of same thing				
7) Euclid stated that things which are equal to the same thing are equal to one another in the form of:				1
(a) an axiom (b) a definition (c) a postulate (d) a proof				
8) Which of the following statement is incorrect?				1
(a) A line segment has defined length				
(b) Three line are concurrent id and only if they have a common point				
(c) two lines drawn in a plane always intersected at a point				
(d) One and only one line can be drawn passing through a given point parallel to a given line				
9) " Two interesting lines cannot be parallel to the same line, is started in the form of:				1
(a) an axiom (b) a definition (c) a postulate (d) a proof				
10) John Playfair was a				1
(a) french mathematician (b) Scottish mathematician (c) Indian mathematician				
(d) Egyptian mathematician				


Section-B

11) Consider the following statement: There exists a pair of straight lines that are everywhere equidistant from one another. Is this statement a

2

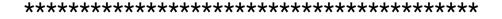
Euclid's axiom, show that AB = XY.



22) In the given figure AB = BC and BX = BY. Show that AX = CY. State Euclid's Axiom used.

5

5


23) In figure, C is the mid-point of AB and Dis the mid-point of AC. Prove that

 $AD = \frac{1}{3}AB$.

- 24) (i) If a point C lies between two points A and B such that AC = BC, then prove that AC = AB.
 - (ii) Is CB = $\frac{1}{3}$ AB?
 - (iii) Apala says that the ratio of AC and BC is 1:1. Is she correct? If so, which value of Apala is depicted by her statement?
 - (iv) Which mathematical concept has been covered in this problem?
 - (v) Write the formulae used in the solution

1) (a) squares and circles

Section-A

- 2) (c) Greek
 3) (b) Three
 4) (a) an axiom
 5) (c) theorem
 6) (a) equal to one another
 7) (a) an axiom
- 8) (c) two lines drawn in a plane always intersected at a point 9) (c) a postulate
- 10) (b) Scottish mathematician

2

2

2

12)

- (i) False. This can be seen visually.
- (ii) False. This contradicts the Axiom.

[Given two distinct points, there is a unique line that passes through them.]

(iii) True by Euclid's Postulate

[A terminated line can be produced indefinitely.]

- (iv) True. If we superimpose the region bounded by one circle on the other, then they coincide. So, their centres and boundaries coincide, therefore, their radii will coincide.
- (v) True by the first Axiom of Euclid.

[Things which are equal to the same

thing are equal to one another.]

13)

- (i) Parallel lines. Lines which do not intersect anywhere are called parallel lines.
- (ii) Perpendicular lines. Two lines which are at a right angle to each other are called perpendicular lines.
- (iii) Line segment. It is a terminated line.
- (iv) Radius. The length of the line segment joining the centre of a circle to any point on its circumference is called its radius.
- (v) Square. A quadrilateral with all the four sides equal and all the four angles of measure 90° each is called a square.

14)

Yes! These postulates contain two undefined terms: Point and Line. Yes! These postulates are consistent because they deal with two different situations (i) says that given two points A and B, there is a point C lying on the line in between them, (ii) says that given A and B, we can take C not lying on the line through A and B. These 'postulates' do not follow from Euclid's postulates, however, they follow from Axiom 'Given two distinct lines, there is a unique line that passes through them.'

AC=BC

AC + AC = BC + AC | Equals are added to equals

$$\Rightarrow$$
 2AC = AB I BC + AC coi

$$\Rightarrow$$
 AC= $\frac{1}{2}$ 2AB.

$$\Rightarrow$$
 AC=BC= $\frac{1}{2}$ AB.

Things which are equal to the same thing are equal to one another.

16) Let a line AB have two mid-points, say, C and D. Then,

$$AC = \frac{1}{2} AB \dots (1)$$

$$AD = \frac{1}{2}AB$$
 ...(2)

From (1) and (2),

$$AC = AD$$
.

Things which are equal to the same thing are equal to one another

We have

AC = BD

 \Rightarrow AC - BC= BD - BC

If equals are subtracted from equals, the remainders are equal (Euclid's Axiom (iii))

$$\Rightarrow$$
 AB = CD

AC - BC coincides with AB; BD - BC coincides with CD [Things which coincide with one another are equal to one another (Euclid's Axiom (iv))]

18)

- (i) Since this is true for anything in any part of the world, this is a universal truth.
- (ii) If the sum of the cointerior angles made by a transversal intersect two straight lines at distinct points is less than 180°, then the lines cannot be parallel.
- 19) Two distinct intersecting lines cannot be -parallel to the same line.

20)

If a straight line I falls on two straight lines m and n such that sum of the interior angles on one side of I is two right angles, then by Euclid's fifth postulate the lines m and n will not meet on this side of I. Next, we know that the sum of the interior angles on the other side of line I will also be two right angles. Therefore, they will not meet on the other side also. So, the lines m and n never meet and are, therefore arallel.

Section-C

21) AC=XD I Given

2AC = 2XD

- ... Things which are double of the same things are equal to one another
- \Rightarrow AB = XY
- ... C is the midpoint of AB and D is the midpoint of XY
- 22) We have

AB = BC

 \Rightarrow AB - BX = BC - BX

|If equals are subtracted from equals, the remainders are equal (Euclid's Axiom (iii))

 $AB - BX = BC - BY \mid :: BX = BY$

AB - BX coincides with AX;

BC - BY coincides with CY

[Things which coincide with one another are equal to one another (Euclid's Axiom (iv))]

2

2

5

5

∴ AC=CB

$$AC + AC = CB + AC$$

| If equals are added to equals, then the wholes are equal (Euclid's Axiom (ii))]

$$\Rightarrow$$
 2AC = AB I CB + AC coincides with AB

$$\Rightarrow \frac{1}{2}(2AC) = \frac{1}{2}AB$$

| Things which are halves of the same thing are equal (Euclid's Axiom (vii»)

$$\Rightarrow$$
 AC = $\frac{1}{2}$ AB

$$\Rightarrow \frac{1}{2}AC = \frac{1}{2}(\frac{1}{2}AB)$$

| Things which are halves of the same thing are equal to one another (Euclid's Axiom (vii))]

$$\frac{1}{2}AC = \frac{1}{2}AB$$

$$AD = \frac{1}{4}AB$$

∵D is the mid-point of AC

∴ AD = DC =
$$\frac{1}{2}$$
 AC (as above)

⇒ AC+AC= BC+AC | If equals are added to equals, the wholes are equal.

$$\Rightarrow$$
 2AC= AB

$$AC = \frac{1}{2} AB$$

$$AC = \frac{1}{2}AB$$
 I Proved in (i) above

$$\therefore$$
 CB= $\frac{1}{2}$ AB

- ... Apala is correct. So, the value 'Sharpness' is depicted by her statement.
- (iv) The mathematical concept 'Introduction to Euclid's Geometry' has been covered in this problem.
- (v) The formulae used in the solution are as follows:
- 1. If equals are added to equals, the wholes are equal.
- 2. Concept of ratio.

5