QB365

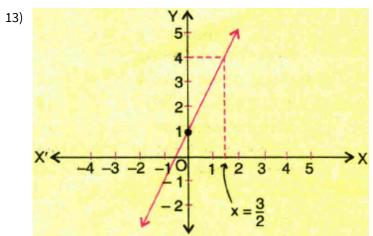
Important Questions - Linear Equations in Two Variables

9th Standard CBSE

Mathematics

Reg.No.:

Time: 01:00:00 Hrs	
Total Marks : 5	50
Section-A	, •
1) $\sqrt{2}y+\sqrt{3}=0$ is	1
(a) a linear equation in one variable (b) not a linear equation in one variable	
(c) a linear equation in two variables (d) none of these	
2) Write a, b, c for the equation 3y+4=0	1
(a) 0,3,4 (b) 3,0,4 (c) 4,0,3 (d) 4,3,0	
3) The equation 2x=3 in two variables is of the form:	1
(a) 2.x+3.y=0 (b) 2.x+0.y=3 (c) $\frac{2}{3} \cdot x + 0.y = 3$ (d) 1.x+ $\frac{2}{3}$.y=1	
	1
represent the statement.	
(a) x=3 (b) x+3y=0 (c) x=3y+3 (d) x=y+3	
5) A point on the line x+y=0 is	1
(a) (1,1) (b) (1,-1) (c) (0,1) (d) (1,0)	
 4) The salary of Dr.Harikisham is thrice the salary of Manish Goyal.Write a linear equation in two variables to represent the statement. (a) x=3 (b) x+3y=0 (c) x=3y+3 (d) x=y+3 5) A point on the line x+y=0 is (a) (1,1) (b) (1,-1) (c) (0,1) (d) (1,1) 6) The line y=mx passes through (a) origin (b) (1,1) (b) (1,1) (c) (m,1) (d) (1,1) 	1
(a) origin (b) (1,1) (c) (m, 1) (d) (-1,_1)	
7) Find the value of k if (4, 1) is a solution of 3x+2y=k	1
(a) 14 (b) 12 (c) 10 (d) 16	
8) How many linear equations in x and y can be satisfied by $x = 1$ and $y = 2$?	1
(a) only one (b) two (c) infinitely (d) three	
9) Any point of the form (q, -q) always lie on the graph of the equation:	1
(a) $x=-a$ (b) $y=a$ (c) $y=x$ (d) $x+y=0$	
10) The graph of y=6 is a line:	1
(a) parallel to x-axis at a distance 6 units from the origin	
(b) parallel to y-axis at a distance 6 units from the origin (c) passing through the point (6,0)	
(d) passing through the origin	
Section-B	
11) Write the following as an equation in two variables:	2
x=-5	
12) Find the value of a so that the following equation may have x=1, y=1 as a solution 3x+ay=6	2


13) Draw the graph of the linear equation $y = m.x + c$ for $m = 2$ and $c = 1$. Read from the graph the value of y when $x = \frac{3}{2}$	2
² 14) The taxi fare in a city is as follows: for the first kilometer, the fare is Rs.10 and for the subsequent distance it is	2
Rs.6 per km. Taking the distance covered as x km and total fare as Rs.y, write a linear equation for this	
information, and draw its graph.	
15) Express the following linear equation in the form ax+by+c=0 and indicate the values of a, b and c in each case:	2
y-2=0	
16) Check which of the following are solutions of equation x-2y=4 and which are not: $(\sqrt{2},4\sqrt{2})$	2
17) Write 3 different solutions of 2x +y =	2
18) Water is following into a water tank at the rate of 10cm ³ /sec.If the volume of water collected in t seconds is V	2
cm ³ , write a linear equation to represent the above statement.Draw a graph of the linear equation.	
19) Let y vary directly as x.If y=12 when x=4, then write a linear equation.Draw the graph of this linear	2
equation.Check if the point (5, 15) lies on the graph.	
20) Express the following statement as a linear equation in two variables by taking present ages (in years) of	2
father and son as x and y, respectively. Age of father 5 years ago was two years ago was teo years more than 7	
times the age of his son at that time. Section-C	
21) Find the value of 'm' if (-m, 3) is a solution of equation 4x+9y-3=0	5
Determine the point on the graph of the equation $2x+5y=20$ where x-coordinate is $\frac{5}{2}$ times its ordinate.	5
23) Draw the graph of the equations x = 3 and 4x = 3y in the same graph. Find the area of the triangle formed by	5
these two lines and the x-axis	
24) Give the equations of two lines passing through (1, 2). How many more such lines are there and why?	5
High.	

Section-A	
1) (a) a linear equation in one variable	1
2) (a) 0,3,4	1
3) (b) 2.x+0.y=3	1
4) (a) x=3	1
5) (b) (1,-1)	1
6) (a) origin	1
7) (a) 14	1
8) (c) infinitely	1
9) (d) x+y=0	1
	_
10) (a) parallel to x-axis at a distance 6 units from the origin	1

Section-B

11) 1x+0y+5=0

12) 3

https://www.qb365.in

Ans: 4

14) $y=10+6(x-1) \Rightarrow y=4+6x$

15) $y-2=0 \Rightarrow 0.x+1.y-2=0$ Comparing with ax+by+c=0, we get a=0,b=1,c=-2

16) The given equation is x-2y=4 $\operatorname{Put} x = \sqrt{2}, \, \operatorname{y=4}\sqrt{2} \, \operatorname{in} \, (1), \, \operatorname{we} \, \operatorname{get} \\ \operatorname{x-2y=}\sqrt{2} - 2(4\sqrt{2}) \\ = \sqrt{2} - 8\sqrt{2} = -7\sqrt{2} \, \operatorname{which} \, \operatorname{is} \, \operatorname{not} \, 4. \\ (\sqrt{2}, \, 4\sqrt{2}) \, \operatorname{which} \, \operatorname{is} \, \operatorname{not} \, 4. \\ (\sqrt{2}, 4\sqrt{2}) \, \operatorname{is} \, \operatorname{not} \, \operatorname{a} \, \operatorname{soluton} \, \operatorname{of} \, (1)$

- 17) (0,0), (1,-2), (2, -4)
- 18) V=10t
- 19) y=3x; Yes
- 20) Let the present ages of father and son be x years and y year respectively. Then, Age of father 5 years ago =(x-5)years

Age of his son 5 years ago(y-5) years

According to the question,

x-5=7(y-5)+2

x-y=7y-35+2

x-7y+28=0

which is the required linear equation in two variables.

Section-C

2

2

2

2

2

2

2

2

2

2

5

5

$$\Rightarrow m = \frac{24}{4} = 6$$

22) 2x+5y=20

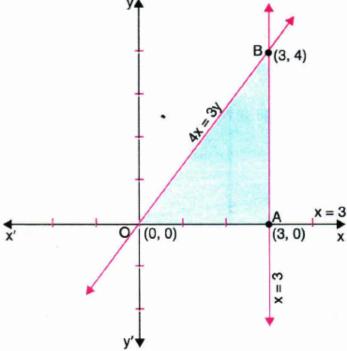
$$x=rac{5}{2}y$$

$$\therefore \ 2\left(\frac{5}{2},y\right) + 5y = 20$$

$$\therefore \ \ x = \frac{5}{2}(2) = 5$$

Hence the required point is (5, 2).

23)


x = 3 represents a line parallel to y-axis at a distance of 3 units to the right of the origin.

$$4x = 3y$$

$$\Rightarrow$$
 $y=rac{4x}{3}$ Table of solution

We plot the points (0,0) and (3,4) on a graph paper and join the same by a ruler to get the line which is the graph of the equation 4x = 3y.

Area of the triangle GAB formed by the given two lines and the x-axis $= rac{3 imes4}{2} = 6$ square units

Two lines passing through (1, 2) are

Infinitely many more such lines can be found because the general equation of a line is ax + by + c = 0. For a given point (x, y) through which the line passes and for an arbitrary pair of values of a and b, c can be determined so as to satisfy ax + by + c = 0. This holds good for each given point and each arbitrary pair of values of a and b. Hence, infinitely many lines can be found passing through a given point.

