### **OB365**

# Model Question Paper 1

#### 9th Standard CBSE

|                     | Mathematics | Reg.No.: |  |  |  |
|---------------------|-------------|----------|--|--|--|
| Fime : 02:00:00 Hrs |             |          |  |  |  |

(a) I (b) II (c) III (d) IV

Total Marks: 100 **Section-A** 1) A rational number lying between -3 and 3 is: 1 (a) 0 (b) -4.3 (c) -3.4 (d) 1.101 1001 10001... 2) Every rational number is: 1 (a) a natural number (b) an integer (c) a real number (d) a whole number 3) Which one of the following is an irrational number? (a) 0.14 (b)  $0.\overline{1416}$  (c)  $0.\overline{1416}$  (d) 0.4014001400014...(d) 2/3 and 4/3 4) Which of the following is a rational number? (a)  $1 + \sqrt{3}$  (b)  $\pi$  (c)  $2\sqrt{3}$  (d) 0 5) Two rational numbers between  $\frac{2}{3}$  and  $\frac{5}{3}$  are: (a) 1/6 and 2/6 (b) 1/2 and 2/7 (c) 5/6 and 7/6 6) Which of the following is an irrational number? 1 (a) 0.15 (b)  $0.15\overline{16}$  (c)  $0.\overline{1516}$  (d) 0.501500150001...7) The expansion for  $(x - y)^2$  is 1 (a)  $x^2-2xy+y^2$  (b)  $x^2+2xy+y^2$  (c)  $x^2+y^2$  (d)  $x^2-y^2$ 8) Which of the following is a polynomial in one variable? 1 (a)  $3 - x^2 + x$  (b)  $\sqrt{3x} + 4$  (c)  $x^3 + y^3 + 7$  (d)  $x + \frac{1}{x}$ 9) The degree of the polynomial p(x)=3 is: 1 (a) 3 (b) 1 (c) 0 (d) 2 10) The value of polynomial  $6a^2 + 7a - 3$  when a=1 is: 1 (a) 10 (b) 4 (c) -13 (d) -4 11) If x is positive and y is negative, then the point (x,y) lies in (a) III quadrant (b) IV quadrant (c) II quadrant (d) I quadrant 12) Where do the II and IV quadrants meet? (a) at O (b) in y - axis (c) in x -axis (d) do not intersect 13) The co-ordinates of a point whose ordinate is 6 and which lies on y-axis are: 1 (a) (0,6) (b) (0,-6) (c) (6,0) (d) (-6,0) 14) In which quadrant does the point (2,3) lie? 1

- 15) The equation  $x+\sqrt{2}=0$  has
  - (a) no solution (b) infinitely many solutions (c) only one solution (d) only two solution
- 16) North-South direction and East-West direction
  - (a) are perpendicular to each other (b) are parallel to each other (c) are opposite to each other

1

1

1

1

1

2

2

2

2

2

2

2

2

2

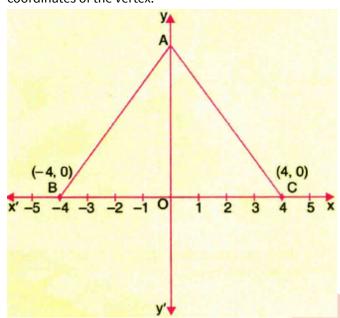
2

2

2

2

- (d) None of these
- 17) The line of intersection of I and II quadrants is
  - (a) x-axis (b) y-axis (c) vertical axis (d) None of these
- 18) Write a, b, c for the equation 2x=5
  - (a) 2, 0, -5 (b) 0,2,-5 (c) 0,0,-5 (d) 2,0,5
- 19) The point which lies on y-axis at a distance of 6 units in the negative direction of y-axis is:
  - (a) (0,6) (b) (6,0) (c) (0,-6) (d) (-6,0)
- 20) The equation in 3x+4y=12 has
  - (a) a unique solution (b) no solution (c) two solution (d) infinitely may solution


## **Section-B**

- 21) Are the following statements true or false? Give reasons for your answers.
  - (i) Every whole number is a natural number.
  - (ii) Every integer is a rational number.
  - (iii) Every rational number is an integer.
- 22) Write three rational numbers between -2/5 and -1/5.
- 23) Find five rational numbers between 1 and 2.
- 24) Find an irrational number between 1/7 and 2/7.
- 25) Simplify:  $\frac{23^{-10}}{23^7}$
- 26) Simplify: (7)<sup>-3</sup>(9)<sup>-3</sup>
- 27)  $7x^2 5$
- 28) Find the value of each of the following polynomials at the indicated value of variables:

$$q(y) = 3y^23 - 4y + \sqrt{11}$$
 at  $y = 2$ 

- 29) If -1 is a zero of the polynomial  $p(x) = ax^3 x^2 + x + 4$ , find the value of a.
- 30) Find if remainder obtained on dividing polynomial  $p(x)=y^3+ay^2+5y-25$  is a factor of polynomial  $f(a)=a^2-5a+25$ .
- 31) Factorise:  $2x^2 + y^2 + 8z^2 2\sqrt{2}xy + 4\sqrt{2}yz 8xz$
- 32) Factorise:  $125x^3 + 27y^3 + 8z^3 90xyz$
- 33) In which quadrant do the given point lie?(4,5)

34) In figure,  $\triangle ABC$  is an equilateral triangle with coordinates of B and C as (-4,0) and (4,0) respectively. Find the coordinates of the vertex.



- 35) Plot the following points A(5,0), B(-1,2), C(2,-2), D(0,4), E(-3,-3), F(0,-1)
- 36) Plot the points A(2,3), B(2,1), C(0,1) and D(0,3). Join the points and identify the figure obtained. Find its area and perimeter.

2

2

2

2

2

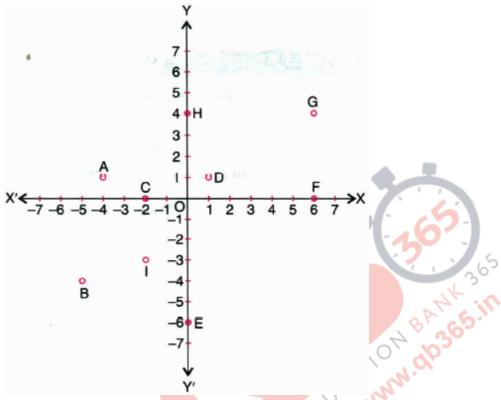
5

5

5

- 37) Write the following as an equation in two variables: 5y=2
- 38) Find three different solutions for the equation 3x-4y=-12
- 39) Solve the equation 3(x + 2) = 2(2x 1) and represent the solution:
  - (I) on the number line
  - (it) in the Cartesian plane.
- 40) Consider the following statement: There exists a pair of straight lines that are everywhere equidistant from one another. Is this statement a

### **Section-C**


- 41) You know that  $\frac{1}{7}=0.\overline{142857}$  . Can you predict what the decimal expansions of  $\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}$  are, without actually doing the long division? If so how?
- 42) Evaluate:  $(\sqrt{2} + \sqrt{3})^2 (\sqrt{5} + \sqrt{2})^2$
- 43) If both (x-2) and  $\left(x-rac{1}{2}
  ight)\,$  are factors of  $px^2+5x+r\,$  show that p=r.
- 44) The perpendicular distance of a point from the x-axis is 2 units and the perpendicular distance from the y-axis is 3 units. Write the coordinates of the point if it lies in the:
  - (i) I quadrant
  - (ii) II quadrant
  - (iii) III quadrant
  - (iv) IV quadrant

5

1

1

- (i) The coordinates of the points B and F
- (ii) The abscissae of points A and C
- (iii) The ordinates of the points A and C.
- (iv) The perpendicular distance of the point G from the x-axis.



- 46) Express the following statement as a linear equation in two variables by taking present ages (in years) of father and son as x and y, respectively. Age of father 5 years ago was two years ago was teo years more than 7 times the age of his son at that time.
- 47) Determine the point on the graph of the equation 2x+5y=20 where x-coordinate is  $\frac{5}{2}$  times its ordinate.
- 48) (i) If a point C lies between two points A and B such that AC = BC, then prove that AC = AB.
  - (ii) Is CB =  $\frac{1}{2}$  AB?
  - (iii) Apala says that the ratio of AC and BC is 1:1. Is she correct? If so, which value of Apala is depicted by her statement?
  - (iv) Which mathematical concept has been covered in this problem?
  - (v) Write the formulae used in the solution

\*\*\*\*\*\*\*\*\*\*\*\*

## **Section-A**

- 1) (a) 0
- 2) (c) a real number
- 3) (d) 0.401 4001 40001 4...
- 4) (d) 0
- 5) (c) 5/6 and 7/6

- 6) (d) 0.501 5001 50001...
- 7) (a)  $x^2 2xy + y^2$
- 8) (a)  $3 x^2 + x$
- 9) (c) 0
- 10) (a) 10
- 11) (b) IV quadrant
- 12) (a) at O
- 13) (a) (0,6)
- 14) (a) I
- 15) (c) only one solution
- 16) (a) are perpendicular to each other
- 17) (a) x axis
- 18) (a) 2, 0, -5
- 19) (c) (0,-6)
- 20) (d) infinitely may solution

## **Section-B**

- 21) (i) False, because zero is a whole number but not a natural number.
  - (ii) True, because every integer m can be expressed in the form m/1, and so it is a rational number.
  - (iii) False because 3/5 is a rational number but not an integer.
- 22) -7/20,-3/10,-1/4
- 23) 7/6,4/3,3/2,5/3 and 11/6
- 24)

To find irrational number, firstly we will divide 1 by 7 and 1 by 3.

Now

$$\therefore \quad \frac{1}{7} = 0.142857.. = \overline{0.142857}$$

Thus,  $1/3=0.333..=0.\overline{3}$ 

That means the required irrational numbers will lie between  $\overline{0.142857}$  and  $0.\overline{3}$  Also, the irrational numbers have

non-terminating non-repeating decimals. Hence, the required irrational number between 1/7 and 1/3 is 0.2101001000....

- 26) 63<sup>-3</sup>
- 27) binomial
- 28)
- 29) 2

1

1

1

1

1

1

1 1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

30) Yes 2 31)  $(-\sqrt{2}x + y + 2\sqrt{2}z)^2$ 2 32)  $(5x+3y+2z)(25x^2+9y^2+4z^2-15xy-6yz-10zx)$ 

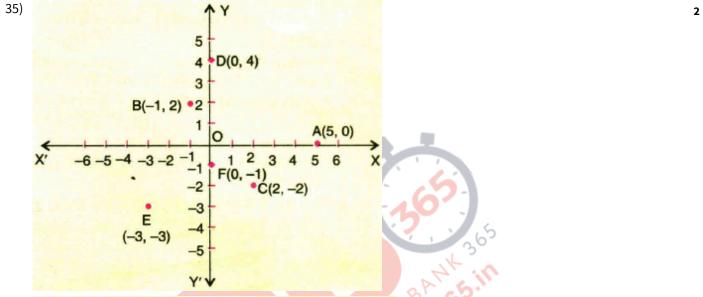
2

2

2

2

2


2

2

2

33) |

34)  $(0, 4\sqrt{3})$ 



36) A(2, 3) (0, 3) D 3 (0, 1) C 1 B(2, 1)

Square; 4 Square units; 8 units

37) 0x+5y-2=0

38) (0,3), (4, 6), (-4, 0)

39) <sub>X=8</sub>

40) Yes

**Section-C** 

5

5

5

Yes! We can predict the decimal expansions of  $\frac{2}{7}$ ,  $\frac{3}{7}$ ,  $\frac{4}{7}$ ,  $\frac{5}{7}$ ,  $\frac{6}{7}$  without actually doing the long division as follows:

To predict the decimal expansion of 2/7, locate when the remainder becomes 2 and respective quotient. Then write the new quotient beginning from there using the repeating digits 1,4,2,8,5,7.

$$\frac{1}{7} = 0.\overline{142857}$$

Similarly,

$$\frac{2}{7} = 0.\overline{285714}$$

$$\frac{3}{7} = 0.\overline{428571}$$

$$\frac{4}{7} = 0.\overline{571428}$$

$$\frac{5}{7}=0.\overline{714285}$$

$$\frac{6}{7} = 0.\overline{857142}$$

42) 
$$2(\sqrt{10} + \sqrt{6} - 1)$$

43) Let  $f(x) = px^2 + 5x + r$ 

If (x-2) is a factor of f(x), then by factor theorem

$$f(2) = 0 \quad |x - 2| = 0$$

$$\Rightarrow \quad x=2$$

$$\Rightarrow p(2)^2 + 5(2) + r = 0$$

$$\Rightarrow$$
  $4p+r+10=0$  .....(1)

nttps://www.db365.in If  $\left(x-\frac{1}{2}\right)$  is a factor of f(x), then by factor theorem,

$$f\left(\frac{1}{2}\right) = 0$$

$$|x - \frac{1}{2}| = 0$$
  $\Rightarrow x = \frac{1}{2}$ 

$$\Rightarrow p\left(\frac{1}{2}\right)^2 + 5\left(\frac{1}{2}\right) + r = 0$$

$$\Rightarrow \frac{p}{4} + \frac{5}{2} + r = 0$$

$$\Rightarrow \frac{p}{4} + \frac{5}{2} + r = 0$$

$$\Rightarrow \qquad p+4r+10=0 \qquad \ldots \ldots (2)$$

Subtracting (2) from (1), we get

$$3p - 3r = 0$$

$$\Rightarrow$$
  $p=r$ 

- (ii) (-3,2)
- (iii) (-3,-2)
- (iv)(3,-2)
- 45) (i) The coordinates of the points B and F are (-5,-4) and (6,0) respectively.
  - (ii) The abscissae of points D and H are 1 and 0 respectively.
  - (iv) The ordinates of the points A and C are 1 and 0 respectively.
  - (iv) The perpendicular distance of the point G from the x-axis is 4 units.

5

46) Let the present ages of father and son be x years and y year respectively.

Then, Age of father 5 years ago =(x-5)years

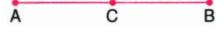
Age of his son 5 years ago(y-5) years

According to the question,

$$x-5=7(y-5)+2$$

which is the required linear equation in two variables.

47) 2x+5y=20


$$egin{array}{l} x=rac{5}{2}y \ dots & 2\left(rac{5}{2},y
ight)+5y=20 \end{array}$$

$$\Rightarrow$$
 y=2

$$x = \frac{5}{2}(2) = 5$$

Hence the required point is (5, 2).

48) AC=BC I Given



⇒ AC+AC= BC+AC | If equals are added to equals, the wholes are equal.

$$\Rightarrow$$
 2AC= AB

$$AC = \frac{1}{2} AB$$

$$AC = \frac{1}{2}AB$$
 I Proved in (i) above

$$\therefore$$
 CB=  $\frac{1}{2}$  AB

- ... Apala is correct. So, the value 'Sharpness' is depicted by her statement.
- (iv) The mathematical concept 'Introduction to Euclid's Geometry' has been covered in this problem.
- (v) The formulae used in the solution are as follows:
- 1. If equals are added to equals, the wholes are equal.
- 2. Concept of ratio.