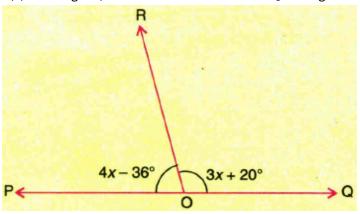
QB365

Model Question Paper 2

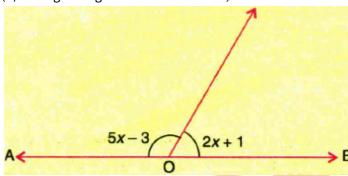
9th Standard CBSE

Mathematics Reg.No.:

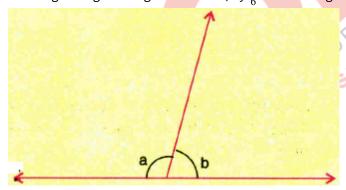
h

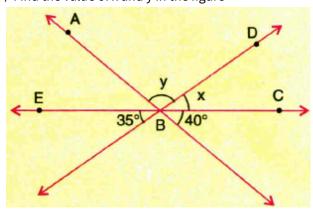

Time: 02:00:00 Hrs

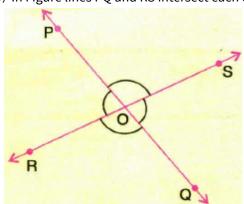
Total Marks: 100

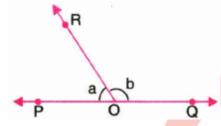

Section-A

1) An obtuse angle	1
(a) measures between 0^0 and 90^0 (b) is greater than 90^0 but less than 180^0 (c) is exactly equal to 90^0	
(d) is exactly equal to 180^{0}	
2) Two angles whose sum is 90^0 are called	1
(a) supplementary angles (b) complement <mark>ary angles (c)</mark> corres <mark>pondi</mark> ng angles (d) alternate angles	
3) The angles whose sum is 180^0 are called	1
(a) supplementary angles (b) complementary angles (c) alternate angles (d) corresponding angles	
4) A reflex angle	1
(a) is greater than 180^0 but less than 360^0 (b) is exactly equal to 180^0 (c) is exactly equal to 90^0	
(d) is greater than 90^0 but less than 180^0 5) Two angles whose sum is 90^0 are called	
5) Two angles whose sum is 90^0 are called	1
(a) Supplementary angles (b) complimentary angles (c) corresponding angles (d) alternate angles	
6) An angle which is exactly equal to 90^0 is called	1
(a) an obtuse angle (b) an acute angle (c) a straight angle (d) a right angle	
7) The angle supplementary to 60^0 is	1
(a) 30^0 (b) 120^0 (c) 45^0 (d) 300^0	
8) The compliment of (90^0-a^0) is	1
(a) $-a^0$ (b) $90^0 + a^0$ (c) $90^0 - a^0$ (d) a^0	
9) The angle of supplementary to 90^0+9^0 is	1
(a) $90^0 + 9^0$ (b) $90^0 - 9^0$ (c) $180^0 - +9^0$ (d) $180^0 - 9^0$	
10) Which of the following is not a pair of complementary angles?	1
(a) 60^0 , 30^0 (b) 56^0 , 34^0 (c) 0^0 , 90^0 (d) 150^0 , 30^0	
11) if the measure of an angle is twice the measure of its supplementary angle, then the measure of the angle is	1
(a) 60^0 (b) 90^0 (c) 120^0 (d) 80^0	
12) The angle which exceeds its complimentary angle by 30^{0}	1
(a) 50^0 (b) 120^0 (c) 60^0 (d) 80^0	


13) Two complementary angles are in the ratio 4:5 then angles are:	1
(a) 90^0 , 90^0 (b) 40^0 , 50^0 (c) 30^0 , 150^0 (d) 45^0 , 45^0	
14) We can draw two different lines in	1
(a) Only one way (b) two different ways (c) three different ways (d) None of these	
15) A line indicates	1
(a) Only one direction (b) two directions (c) no direction (d) None of these	
16) In the following figure $\angle AOB$ and $\angle BOC$ are:	1
C	
A O B	
(a) Supplementary angles (b) complementary angles (c) adjacent angles (d) None of these	
17) A pair of angles is called linear pair if the sum of two adjacent angles is:	1
(a) 90^0 (b) 180^0 (c) 230^0 (d) 360^0	
(a) 90° (b) 180° (c) 230° (d) 360° 18) The value of x in figure is: (a) 80° (b) 20° (c) 25° (d) 40° 19) In figure the value x is (a) 30° (b) 10° (c) 20° (d) 40° 20) If two parallel lines are intersected by a transversal then corresponding angles are:	1
(a) 80^0 (b) 20^0 (c) 25^0 (d) 40^0	
19) In figure the value x is	1
(a) 30^0 (b) 10^0 (c) 20^0 (d) 40^0	
20) If two parallel lines are intersected by a transversal then corresponding angles are:	1
(a) Equal (b) Complimentary (c) Supplementary (d) Sum of the two angles is 360°	
Section-B	
21) Two complementary angles are such that two times the measure of one to three times the measure of the	2
other .Find the measure of the largest angle.	
22) If $(3x-58^0)$ and $(x+38^0)$ are supplementary angles, find x and the angles.	2


(b)In the given figure find the value of x,If AOB is a line


²⁴⁾ In the given figure a is greater than b, by $\frac{1}{6}$ th of a straight angle Find the angles of a and b.


25) Find the value of x and y in the figure

2

- 27) An exterior angle of a triangle is 115^0 and one of the interior opposite angles is 35^0 Find the other two angles of the triangle
- 28) In figure $\angle B = 55^{\circ}$, $\angle C = 45^{\circ}$ and the bisector of \angle A meets BC at D ,find \angle ADB and \angle ADC
- 29) An angle is equal to five times its supplement. Find the measure of the angle
- 30) In figure $\angle POR$ and $\angle QOR$ form a linear pair. If b-a= 60° find the values of a and b.

31) In \triangle ABC if $\angle A = (2Xx - 5)^0$, $\angle B = (5X + 5)^0 \angle C = (3Xx - 50)^0$ then find the values of x, \angle A, \angle B and \angle C

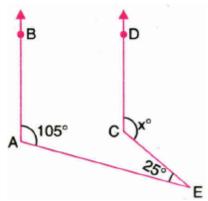
2

2

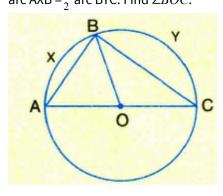
2

2

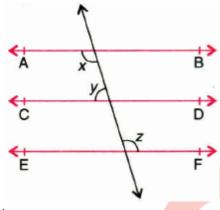
2


2

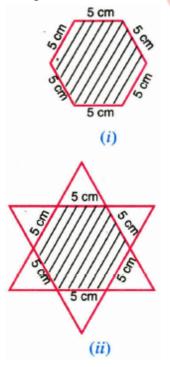
2


2

2


- 32) find the angles of a traingle PQR if $\angle p \angle q = 45^{\circ}$ and $\angle Q \angle R = 30^{\circ}$
- 33) Let OA,AB,OC and OD be the rays in the anticlockwise direction starting from OA, such that $\angle AOB = \angle COD = 100^0$; $\angle AOD = \angle BOC = 80^0$ Is it true that AOC and BOD are straight lines? Justify your answer by drawing by drawing the figures.
- 34) In the given figure AB \parallel C Find the value of x.

- 35) In $\triangle PQR$, $\angle P = 100^{\circ}$ and $\angle R = 60^{\circ}$, which side of the triangle is the longest. Give reasons for your answer.
- 36) In a parallelogram PQRS, if ∠QRS=2x, ∠PQS=4x, and ∠PSQ=4x, find the angles of the parallelogram.
- 37) If an angle of a parallelogram in two-third of its adjacent angle then find the measure of all the angles,



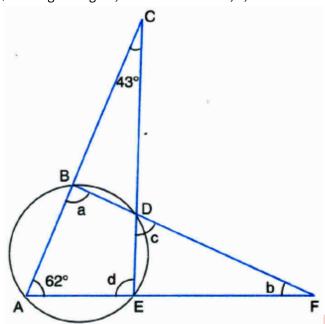
39) In figure if $AB \parallel CD \parallel$, $CD \parallel EF$ and y:z=3:7, find x

40) Complete the hexagonal and star shaped Rangolies [see figures (i) and (ii)] by filling them with as many equilateral triangles of side 1em as you can. Count the number of triangles in each case. Which has more

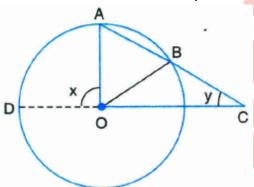
triangles?

Section-C

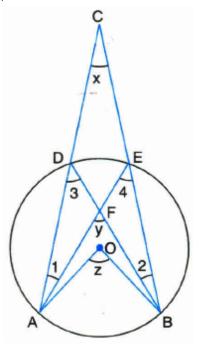
41) ABCD is a cyclic trapezium with AD \parallel BC. If $\angle B$ = 70°, determine other three angles of the trapezium.


2

12

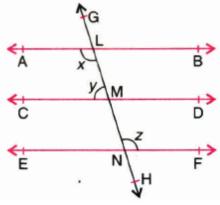

12

12


12

43) In the figure, chord AB of a circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. If $\angle ACD = y$ and $\angle AOD = x$, show that x = 3y.

- 44) Prove that the opposite angles of an isosceles trapezium are supplementary.
- 45) ABCD is a cyclic quadrilateral. If AC bisects both the angles A and C then prove that $\angle ABC = 90^{\circ}$.
- 46) ABC is a triangle and P is a point on the side BC such that AB = AP. If AP produced meets the circumcircle of $\triangle ABC$ at Q, prove that CP = CQ.
- 47) D is a point on the circumference of circumcircle of $\triangle ABC$ in which AB =AC such that Band D are on opposite sides of AC. If CD is produced to point E such that CE = BD, prove that AD = AE.


Section-A

Section-A
1) (b) is greater than 90^0 but less than 180^0
1) (b) is greater than 90° but less than 180° 2) (b) complementary angles 3) (a) supplementary angles 4) (a) is greater than 180° but less than 360° 5) (b) complimentary angles
3) (a) supplementary angles
4) (a) is greater than 180^0 but less than 360^0
5) (b) complimentary angles
6) (d) a right angle
7) (b) 120 ⁰
8) (d) a^0
9) (a) $90^0 + 9^0$
10) (a) 60^0 , 30^0
11) (c) 120^0
12) (c) 60^0
13) (b) 40^0 , 50^0
14) (b) two different ways
15) (b) two directions
16) (d) None of these
17) (b) 180^{0}
18) (b) 20 ⁰

19) (c) 20^0	1
20) (a) Equal	1
Section-B	
21) 54 ⁰	2
22) $x=50,92^0$ and 88^0	2
23) (a) 28 (b) 26	2
24) Given,	2
$a-b=\frac{1}{6}\times 180^o$	
a-b=30°(1)	
a+b=180° (Linear pair)(2)	
Adding (1) & (2), 2a=210°	
a=105°	
b=180°-a=180°-105°	
=75°	
25) $X=35^{\circ} y=105^{\circ}$ 26) $\angle PQR=75^{\circ}, \angle ROQ=105^{\circ} \angle POS=105^{\circ} \angle SOQ=75^{\circ}$ 27) $80^{\circ}, 65^{\circ}$ 28) $85^{\circ}, 95^{\circ}$ 29) 150° 30) $60^{\circ}, 120^{\circ}$ 31) $13; 21^{\circ}, 70^{\circ}, 89^{\circ}$ 32) $100^{\circ}, 55^{\circ}, 25^{\circ}$	2
26) $\angle PQR = 75^{\circ}, \angle ROQ = 105^{\circ} \angle POS = 105^{\circ} \angle SOQ = 75^{\circ}$	2
27) 80 ⁰ ,65 ⁰	2
28) 85 ⁰ , 95 ⁰	2
29) 1500	2
30) 60^0 , 120^0	2
31) 13; 21 ⁰ , 70 ⁰ , 89 ⁰	2
32) 100 ⁰ , 55 ⁰ , 25 ⁰	2
33) Yes! AOC and BOD both are straight lines	2
34) ₁₃₀ 0	2
35) QR as ∠P is the greatest	2
36) 36°,144°,36°, 144°	2

37) 72°, 108°, 72°, 108°

38) 120°

and $: AB \parallel CD$ $CD \parallel EF : AB \parallel EF$

Lines parallel to the same line are parallel to each other

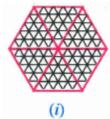
$$x = 2$$

Alternate Interior Angles

$$X+y=180^{0}$$

Consecutive interior angles on the same side of a transversal GH to parallel lines AB and CD

From (1) and (2)


$$z+y=180^{0}$$

Sum of the ratios=3+7=10

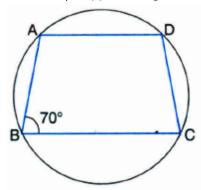
$$\therefore y = \frac{3}{10}X180^0 = 54^0$$
and $z = \frac{7}{10}x180^0 = 126^0 \therefore x = z = 126^0$

40) (i) Number of triangles = 25×6

$$= 25 + 25 + 25 + 25 + 25 + 25 = 150$$

(ii) Number of triangles = $25 \times 6 + 25 \times 6$

Figure (ii) has more triangles.


AD || BC.
$$\angle B = 70^{\circ}$$
.

To determine: Other three angles of the trapezium.

Determination:

$$\angle B + \angle D = 180^{\circ}$$

: Opposite angles of a cyclic quadrilateral are supplementary

$$\Rightarrow 70^{\circ} \angle D = 180^{\circ}$$

$$\Rightarrow \angle D = 180^{\circ} - 70^{\circ}$$

$$\Rightarrow \angle D = 110^{\circ}$$

Again, ∵ AD || BC and transversal AB intersects them

$$\therefore \angle A + \angle B = 180^{\circ}$$

 $|\because$ The sum of the consecutive interior angles on the same side of a transversal is 180°

$$\Rightarrow \angle A + 70^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $\angle A = 180^{\circ} - 70^{\circ}$

$$\Rightarrow$$
 $\angle A = 110^{\circ}$

Also,
$$\angle A + \angle C = 180^{\circ}$$

: Opposite angles of a cyclic quadrilateral are supplementary

$$\Rightarrow 110^{\circ} + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 $\angle C = 180^{\circ} - 110^{\circ}$

$$\Rightarrow$$
 $\angle C = 70^{\circ}$.

An exterior angle of a cyclic quadrilateral is equal to its interior opposite angle

$$\Rightarrow \angle c = 62^{\circ}$$

In $\triangle AEC$,

$$\angle ACE + \angle CAE + \angle d = 180^{\circ}$$

| Angle sum property of a triangle

$$\Rightarrow$$
 43° + 62° + $\angle d$ = 180°

$$\Rightarrow$$

$$\angle d = 75^{\circ}$$
 ...(2)

$$\angle a + \angle d = 180^{\circ}$$

| Opposite angles of a cyclic quadrilateral are supplementary

$$\Rightarrow$$
 $\angle a + 75^\circ = 180^\circ$

$$\rightarrow$$

$$\angle a = 105^{\circ}$$

In ΔFDE ,

$$\angle c + (180^{\circ} - \angle d) + \angle b = 180^{\circ}$$

| Angle sum property of a triangle

$$\Rightarrow$$
 62° + (180° - 75°) + $\angle b$ = 180°

$$\Rightarrow$$
 $\angle b = 13^{\circ}$

Given: Chord AB of a circle with centre O, is produced to C such that BC = OB. CO is joined and produced to meet the circle in D. $\angle ACD = y$ and $\angle AOD = x$.

To Prove: x = 3y

Proof: In $\triangle BOC$,

$$\therefore \angle BOC = \angle BCO$$

Angles opposite to equal sides of a triangle are equal

$$\Rightarrow \angle BOC = y$$

In $\triangle BOC$,

$$\angle OBA = \angle OBC + \angle BCO$$

: An exterior angle of a triangle is equal to the sum of its two interior opposite angles

In $\triangle OAB$,

| Radii of the same circle

$$\therefore \angle OAB = 2y$$

Now, ∵ DOC is a straight line

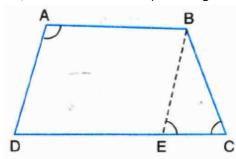
$$\therefore$$
 $\angle AOD + \angle AOB + \angle BOC = 180^{\circ}$

$$\Rightarrow x + \{180^{\circ} - (\angle OAB + \angle OBA)\} + y = 180^{\circ}$$

| Angle sum property of a triangle

$$\Rightarrow$$
 $x + \{180^{\circ} - (2y + 2y)\} + y = 180^{\circ}$

$$x=3y$$


To prove: Opposite angles of ABCD are supplementary.

Construction: Draw BE || AD **Proof:** In quadrilateral ABED,

AB || DE | I Given

AD || BE | By construction

∴ Quadrilateral ABED is a parallelogram.

A quadrilateral is a parallelogram if its both the pairs of opposite sides are parallel.

$$\therefore \angle BAD = \angle BED$$

I Opposite angles of a parallelogram are equal

But AD=BC | Given

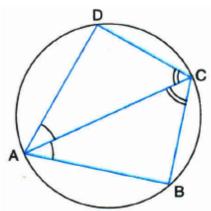
∴ BE=BC

$$\therefore \angle BEC = \angle BCE$$

| Angles opposite to equal sides of a triangle are equal

$$\therefore \quad \angle BEC = \angle BED = 180^{\circ}$$

Linear pair axiom


$$\Rightarrow \angle BCE + \angle BED = 180^{\circ}$$
 | From (2)

$$\Rightarrow \angle BCE + \angle BAD = 180^{\circ}$$
 | From (1)

$$\Rightarrow$$
 $\angle BCD + \angle BAD = 180^{\circ}$

⇒ Opposite angles of ABCD are supplementary.

To Prove: $\angle ABC = 90^{\circ}$

Proof: In $\triangle ADC$ and $\triangle ABC$,

 $\angle DAC = \angle BAC \mid :: AC \text{ bisects angle A}$

 $\angle DCA = \angle BCA$

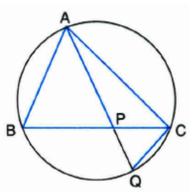
| ∵ AC bisects angle C

AC=AC

Common

 $\therefore \Delta ADC \cong \Delta ABC \mid ASA$ congruence rule

$$\therefore \angle ADC = \angle ABC$$


But $\angle ADC + \angle ABC = 180^{\circ}$

applementa | ∵ Opposite angles of a cyclic quadrilateral are supplementary

$$\therefore \angle ADC = \angle ABC = 90^{\circ}$$

Given: ABC is a triangle and P is a point on the side BC such that AB = AP. AP produced meets the circumcircle of $\triangle ABC$ at Q.

To Prove: CP=CQ

Proof: In $\triangle ABP$ and $\triangle CQP$,

$$\angle BAP = \angle QCP$$

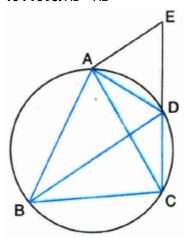
Angles in the same segment of a circle are equal

$$\angle ABP = \angle CPQ$$

$$\therefore \qquad \Delta ABP \cong \Delta CPQ$$

$$\frac{AB}{CO} = \frac{BP}{OP} = \frac{AP}{CP}$$

 $\frac{D}{CQ} = \frac{BP}{QP} = \frac{AP}{CP}$ $| \because \text{ Corresponding sides of two similar triangles are proportional}$ $\frac{AB}{CQ} = \frac{AP}{CP}$ $AB = AP \qquad | \text{ Given}$ CQ = CP


$$\Rightarrow \frac{AB}{CO} = \frac{AP}{CP}$$

But

:.

Given: D is a point on the circumference of circumcircle of $\triangle ABC$ in which AB = AC such that B and D are on opposite sides of AC. CD is produced to point E such that CE = BD.

To Prove: AD = AE

Proof: In $\triangle ACE$ and $\triangle ABD$,

$$\angle ACE = \angle ABD$$

| Angles in the same segment of a circle are equal

AC=AB

I Given

CE=BD

I Given

 $\therefore \quad \Delta ACE \cong \Delta ABD$

| SAS congruence rule

∴ AE=AD

ICPCT

48) **Given:** O is the centre of a circle.

To Prove: x + y = z

Proof: $\angle 3 = \angle 4$

Angles in the same segment of a circle are equal

$$\angle z = 2 \angle 3$$

$$\Rightarrow$$
 $\angle z = \angle 3 + \angle 3$

$$\Rightarrow$$
 $\angle z = \angle 3 + \angle 4$

....(1)

Now
$$\angle y = \angle 3 + \angle 1$$

....(2)

An exterior angle of a triangle is equal to the sum of its two interior opposite angles

(1) - (2) gives

$$\angle z - \angle y = \angle 4 - \angle 1$$

As
$$4 = \angle x + \angle 1 \Rightarrow \angle 4 - \angle 1 = \angle x$$

An exterior angle of a triangle is equal to the sum of its two interior opposite angles

$$\Rightarrow \angle 4 - \angle 1 = \angle x$$

....(4)

From (3) and (4),

$$\angle z - \angle y = \angle x$$

$$\Rightarrow \quad \angle x + \angle y = \angle z$$