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CBSE Board
Class XII Mathematics
Board Paper 2012

Delhi Set - 2
Time: 3 hrs Total Marks: 100

General Instructions:

1. All questions are compulsory.

2. The question paper consists of 29 questions divided into three Section A, B and C.
Section A comprises of 10 questions of one mark each, Section B comprises of 12
questions of four marks each and Section C comprises of 7 questions of six marks each.

3. All questions in section A are to be answered in one word, one sentence or as per the
exact requirement of the question.

4. There is no overall choice. However, internal choice has been provided in 4 questions
of four marks each and 2 questions of six mark each. You have to attempt only one of
the alternatives in all such questions.

5. Use of calculators is not permitted. You may ask for logarithmic tables, if required.

SECTION - A

1. Evaluate [ 1—x Jx dx.

3
2. Evaluate: f 1 dx
X
2

2 311 -3 —4 6 )
3. If = , write the value of x.
5 71{-2 4 -9 x

4. Find '\' when the projection of a=x + ] + 4k on b=2i + 6} + 3k is 4 units.
5. Ifaline has direction ratios 2,-1,-2 then what are its direction cosines?

6. Let * be a ‘binary’ operation on N given by a * b = LCM (a, b) for all a, b € N.
Find 5 * 7.

7. Write the principal value of cos | [%] —2sin ' [—%] .
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cosf sin6 sin® —cos0

8. Simplify: cos 6 +sin 6

—sin® cosH cosf sin0

9. Find the sum of the following vectors:
a=1-2j,b=2i —3jc=2 +3k

5 3 8
10.If A=1|2 0 1|, white the cofactor of the element az>.
1 2 3

SECTION -B

11.1f 5 , B, E are three vectors such that H =5, B‘ =12 and H =13 and ; + B + E =0 Find

thevalueof a.b +b.c +c.a.
12.Solve the following differential equation:

ZXZQ—ZX}’—FYZ =0.
X

13.How many times must a man toss a fair coin, so that the probability of having at least
one head is more than 80%?

14.1f (cos x)Y = (cos y)*, find j—y
X

OR
d sin” a +y
If sin y =x sin (a +y), prove that & =,
dx sina

15.Let A = R - {3} and B = R - {1}. Consider the function f : A — B defined by
f(x) = [x -2

3] . Show that f is one-one and onto and hence find f1.

16.Prove that tan-! [ﬂ]

1+ sin x

Prove that sin ! [ le sin E] _ COSil [36]
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17.Find the point on the curve y = x3 - 11x + 5 at which the equation of tangent is
y=x-11.
OR

Using differentials, find the approximate value of /49.5.

18.Evaluate: ['sin x sin 2x sin 3x dx

OR

Evaluate: [ 2 dx

1—x 14—)(2

19.Using properties of determinants prove the following:

1 1 1
a b c|l=(@-b)(b-c)(c-a)(a+b+c)
a b

20.If y = 3 cos (log x) + 4 sin (log x), show that
2
X d—}zl +x dy +y=0
dx dx

21.Find the equation of the line passing through the point (-1,3,-2) and perpendicular to

thelines§:%:Eandx+2:y_1zz+1.

3 -3 2 5

22.Find the particular solution of the following differential equation:

X+1 d—yzze_y —1;y=0when x=0.
dx
SECTION - C
23.Using matrices solve the following system of linear equations:

X—y+2z2=7

3x +4y —5z2= -5

2Xx —y +3z=12

OR

Using elementary operations, find the inverse of the following matrix:
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24.A manufacturer produces nuts and bolts. It takes 1 hours of work on machine A and 3
hours on machine B to product a package of nuts. It takes 3 hours on machine A and 1
hour on machine B to produce a package of bolts. He earns a profit of "17.50 per
package on nuts and "7 per package of bolts. How many packages of each should be
produced each day so as to maximize his profits if he operates his machines for at the
most 12 hours a day? From the above as a linear programming problem and solve it
graphically.

25.Find the equation of the plane determined by the point A(3, - 1, 2), B(5, 2, 4) and
C(-1, -1, 6) and hence find the distance between the plane and the point P(6, 5, 9).

T

4
26.Prove thatf\/tan X + \/cot X dx = \/5 : %
0

OR
3

Evaluate [ 2x° + 5x_dx as a limit of sum.
1

27.Show that the height of a closed right circular cylinder of given surface and maximum
volume, is equal to the diameter of its base.

28.A girl throws a die. If she get a 5 OR 6, she tosses a coin three times and notes the
number of heads. If she gets 1, 2, 3 OR 4, she tosses a coin two times and notes the
number of heads obtained. If she obtained exactly two heads, what is the probability
that she threw 1, 2, 3 OR 4 with the die?

29.Using the method of method of integration, find the area of the region bounded by the
following lines:

3x-y-3=0,
2x+y-12=0,
x-2y-1=0
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CBSE Board
Class XII Mathematics
Board Paper 2012 Solution
Delhi Set - 2
SECTION - A
1. [1-x Jxdx
3
= [|Nx —x? ]dx
13
= x2 —x2 {dx
3 S
2 2
3 5
— EXZ __XZ +C
3
2.
3
fldx= logx z =log3—log2= log§
2 X 2
3.

2 3)[1 3| (-4 6
5 7)1-2 4) (-9 x
-4 6 —4 6
= =

-9 13} (-9 x
by equality of matrices
x=13
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- —

4. Projection ofaonb= T%b =4 (given)
5
N (Ni+j+4k).(2i+ 6]+ 3k) 4
\j22+62+32
N AN +§>+12 4

=X=5

5. The direction cosines are
2 -1 -2

S22+ (12427 P41+ (-2 22 (12 (27

wInN

—-1-2
"33

6. According to the given operation
5*7=L.CM.(5,7) =35

7. Principal value of cos™ (%) = 2

Principal value of sin™ (_71) = %ﬁ

Hence principal value of cos™ (%) —2sin’t (_71)

=)
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cos® sin6 ] sin® —cos®9
cosf| + sin 0 ]
—sin® cosb cosf sin6
B cos2 0 cos0Osin 0 sin2 0 —sinfcos 0
—sin Ocos0 cos’ 0 sinOcos 0 sin” 0
B Cos2 0+ sin2 0 cos0sin 6 —sin Ocos6
—sin 0cosO+ cosOsin 0 cos2 9+sin2 0
1
= 0 ['.'COSZ 9+sin2 0=1

Sum of the vectors,
a+b-+c=(i—2j)+(2i —3j) +(2i +3Kk)
—5i—5j+3k

5 8
Minor of the element a;, = ‘2 1‘
=5-16=-11
SECTION -B

Considering dot product on both sides,
(§+B+E). (§+B+E)= 0.0

= [d +[p [ +2(a.5+b.c+c.a)=0

U

52+122+132+2(5.B+B.E+E.5)=o
= 2(5.B+B.E+E.£)=—338

= (aBebocrca)=-2 o169
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12. Here, 2)(23—y - 2xy+y2 =0
X

dy _ 2xy- y2
dx 2x?
Hence the given equation is an homogeneous equation.
Let y=wvx
and dy_ v+ xd—V
dx dx
2
2 -
So, V+Xd—V= X(VX) (VX)
dx 2x>
2v —v? v?
= = V [ —
2 2
dv  v?
= X —=——
dx 2
= 2 jizd = —j%
\
1
= 2(——j:—log |X| +c
\%
= —= log|x| +cC
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13. Let the man toss the coin n times. The n tosses are n Bernoulli trials

14.

1
Probability (p) of getting a head at the toss of a coin is 2

ool g2l
p=5 7475

n—x X n
N SR NE) I EY RUNEY

Itis given that

P(getting at least one head ) > %

=P(X21)>08
=1-P(X=0)>0.8

—1-"C, = >08
n

e, 2 <02
211

:>i<0.2

=2">_—=5

=2">5 ————(1)
The minimum value of n which satisfies the given inequality is 3.

Thus, the man should toss the coin 3 or more than 3 times.

The given function is (cosx)” =(cosy)*

Taking logarithm on both the sides, we obtain
ylog cosx = xlog cosy

Differentiating both sides, we obtain

dy d d d
log cosxx —=—+y x—/(log cosx)=logcosy x —(x)+xx—(log cos
g dx y dx( g ) geosy dx( ) dx( g y)
dy d d
=log cosxx—Z=+yx x —/(cosx)=logcosy x1+xx x —( cos
8 dx Y COSX dx( ) BEOSY cosy dx( y)

= log cosxx WY 4 Y (—sinx)=logcosy + x(—siny)xd—y

dx cosx cosy dx
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dy dy
= log cosxx ——ytanx =logcosy —xtany x —
dx dx

dy dy
= log cosxx —+xtany x— =logcosy + y tanx
dx dx

= (log cosx+xtany)x3—z =logcosy +ytanx

. dy _logcosy +ytanx

“dx logcosx+xtany

OR

We have,
siny =xsin(a +y)
siny
sin(a +y)
Differentiating the above function we have,

sin(a + y)xcosyjy—sinyxcos(a + y)gy
X X

sin(a+y)

=>X=

= sin®(a + y):[sin(a +y)xcosy —siny x cos(a + y)]j—y
X

sin® (a + y) dy
= =
[sin(a +y)xcosy —siny x cos(a + y)] dx

sin*(a+y) _dy

sin(a+y—y)_dx
)
_ sin (a+y):d_y

sina dx

)
- dy _sin (a+y)
dx sina

15. Given that A=R—{3}, B=R—{1}

Consider the function

f: A— B defined by f(x) =(X_2j

x—3

Let X,y € A such that f(x) =f(y)
N Xx—2 :y—Z
x-3 y-3
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=(x-2)(y-3)=(y-2)(x-3)
=Xy —-3x—2y+6=xy-3y—-2x+6
= -3x—-2y=-3y-2X
=3x—-2x=3y-2y
=>X=Yy
..f is one-one.
LetyeB=R—{1}
Then, y # 1. The function fis onto if
there exists x € A such that f(x)=y.
Now, f(x):y
X—2
X—3=

:>x—2:y(x—3)

y

=>X—-2=Xxy-3y
=>xXx—-xXy=2-3y
=x(1-y)=2-3y
2-3y
= =y

=X

eA [y=1].(1)

yeA
1-y

Thus, for any y € B, there exists

such that

.. fis onto.

Hence, the function is one-one and onto.

Therefore, f 1 exists.
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Consider equation (1).

X:21—_3;7€A [y¢1]

Replace y by xand x by f ! (x) in the above equation,

we have,

. 2—-3x
fl(x): T

_1[ cosx
tan :
1+sinx

,x=1

.
Sln(z—xj
=tan
1+cos(n—Xj
2
sinf © X |cos[ T %
. sin| | =2 Jeos|  — "> sin® =2sin(6/2)cos(6/2) and
=tan
2cosz[“—xj 1+cos0=2cos*(0/2)
i 4 2
Ll X T X
—tan Y tan| -2 |2 22 roved
[4 ZH (4 ZJ & )

Let sin’t ﬁ =X.
17

Then, sinx= %; cosx=\/1 —x?

2
= COSX = 1—(£j

17
225
= COSX=,[——
289
15
= COSX=—
17
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sinx
tanx =

COSX

8

17

=t ==
anx LS

17

8

= tanx=—
15

Ctan-l[ B
= x=tan [15}...(1)

Let sin’! g =y...(2)

Then, siny=§; cosy=«/1 - y2

2
= COoSy = 1—(§j

= Ccosy = 16
“\25

4
= cosy=—

siny
cosy

s.tany =

=tany =

=tany =

Bl v o w

U
= y=tan (4]....(3)

From equations (2) and (3), we have,

sin’! (§j —tan! (Ej
5 4
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Now consider sin™* 3 +sin’! § :
17 5

From equations (1) and (3), we have,

sin! E +sin! § —tan ! E +tan! E
17 5 15 4

8.3
—tan ! 15 4 '.'tan_lx+tan_1y=tam_1ﬂ
8 3 1-xy
_7)(7 L
15 4
_1( 32+45
=tan
60-24

sin’! (Ej +sin’ (§j =tan ! (Zj ..... (4)
17 5 36

Now, we have:

1(77
Lettan | — |=2z.
(36}

Then tanz=Z
36

77\
=Ssecz= 1+(£j ['.'secez 1+tan29}

f1296+5929
=>seCz=,|——
1296

7225
=secz=,|——
1296
85
= secz=—
36
We know that cosz =
secz
Thus, secz:8—5,cosz:§
36 85

_1(36j
=z=c0S | —
85
1(77 _1( 36
—=tan | — |=cos | —
36 85
—sin![ 2 |4 sin?[ 3 ]=cos [ 38 [ from equation (4)]
17 5 85
Hence proved.
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17. The equation of the given curve isy =x3 - 11x + 5.

The equation of the tangent to the given curve is given as y = x = 11 (which is of the
formy =mx + c).
~Slope of the tangent = 1

Now, the slope of the tangent to the given curve at the point (x, y) is given by,

Y _32 14
dx

Then, we have:

3x2-11=1

=>3x2=12

>x2=4

>X = 2

Whenx=2,y=(2)3-11(2)+5=8-22+5=-9.

Whenx=-2,y=(-2)3-11(-2)+5=-8+22+5=109.

Hence, the required points are (2, -9) and (-2, 19).

OR

Considery = \/;, Let x =49 and Ax = 0.5.

Then,

Ay =x+Ax —x
V19530

=+/49.5-7

—/49.5=7+ Ay

Now, dy is approximately equal to Ay and is given by,

dy
dy =| =< |Ax
Y (dxj

=0.035
Hence the approximate value of 449.5 is 7 + 0.035 = 7.035
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1
18. It is known that, sinAsinBzi cos A—B —cos A+B
.. [sinxsin2xsin3x dx = | sinxx% cos 2x —3x —cos 2x +3x
1. . .
=5f sinxcos —x —sinxcos5x dx

1. . :
= Ef sinxcosx —sinxcos5x dx

1 .sin2x 1
== dx — = [ sinxcos5x
Zf 2 Zf
_ Ljzcoszx —lfl sin x+5x +sin x—5x dx
4 2 272
_—cost_lf €n6x+sin (4){)
8 4
—cos2x 1|—cos6x - cos4x
8 4 6 4
—cos2x 1|—cos6x cos4dx
= — 4 SF +C
8 8 3 2
B —6cost_1 —2c0s6x+ 3cos4x iC
48 8 6

— % [cos6x—3cos4x—6cost]+C

OR

Let 2 \ A +BX+C
1-x 1+X2 1-=x 1+X2

2=A 1+x* 4+ Bx+C 1-x

2=A+ Ax® +Bx —Bx* + C—Cx

Equating the coefficient of x2, x, and constant term, we obtain
A-B=0

B-C=0

A+C=2

On solving these equations, we obtain

A=1,B=1,andC=1

2 1 x+1
=t
1—x 1+4x* 1-x 1+4x
2 X 1
=/ dx= [ dx+ [ Sdx+ [——dx
1-x 1+x° 1-x 14+x 14+x
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:—fidx—klf szdx—i—f%dx
x—1 27 1+x 1+x

1

= —log|x—1|+%log‘1 +X2‘ +tan “x+C

1 1 1
A=|a b ¢
a® b

Applying C1 = C1 - Czand C2 = Cz - C3, we have:
1-1 1-1 1
A=|a—c b—c ¢

ad-c& -3 &

0 0 1

= a—c b—c C
a—c az—l—ac—kc2 b—c b2—|—bc—|—c2 3
0 0 1
=c—a b-c —1 1 c
—a2+ac+02 b2—|—bc+c2 C
Applying C1 = C1 + Cz2, we have:

0 0 1
A= c—a b—c 0 1 c

w

b —a® + bc—ac b*4+bct+c® ¢

0 0 1
=b—-c c—a a—-b 0 1 C

—a+b+c b2—|—bc—|—c2 C

0 0 1
=a—-b b-c c—a a+b+c|0 1 c

1 b +bc+c2 c
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Expanding along C1, we have:

01
A= a—b b—c c—a a+b+c -1 ‘1

C
=a—b b—-c c—a a+b+c

Hence proved.

It is given that, y = 3cos(log x) + 4sin(log x)
Then,

dy d d.
—=3x—1|cos logx |+4x—1|sin logx
dx dx[ & } dx[ & ]

=3Xx|—sin logx ><i logx
X

+4x

d
cos logx x— logx
dx

—3sin logx +4cos logx  4cos logx —3sin logx

X X X
&y _
dx?
_d 4cos(logx)—3sin(logx)
dx X
x{4cos(logx)—BSin(logx)}'—{4cos(logx)—35in(logx)}(x)'
- 2
X
x[—4sin(logx)><(logx)'—BCos(logx)x(logx)']—4cos(logx)+351n(logx)
- 2
X
B —4sin(logx)—3cos(logx)—4cos(logx) +3sin(logx)
&2
—sin(logx)—7cos(logx)
24y dy
S X d?-FX&-Fy
—sin (1 -7 1 4 1 —3sin(l
=x2( sin(logx) - COS(OgX)JH{ cos(logx) Sln(ng))+E}cos(logx)+451n(10gx)
X X

=—sin(logx)—7cos(logx)+4cos(logx)—3sin(logx)+3cos(logx)+4sin(logx)
=0

Hence proved.
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21. We know that, equation of a line passing through x;,y;,z; withdirection ratios a, b, c

X-X1 _ Y= YV1_277%
b C

is given by

So, the requiredequation of a linepassing through (—1,3,—2) is:
x+1 y—-3 z+2
a b C

Given thatline > = % zg is perpendicular to line (1),so

a;ap +byby +c4c, =0
al+b2+c3=0
a+2b+3c=0 ——=2
x+2 y—1 z+1
-3 2

a;a; +byby +c4c, =0

a 3+b2+c5=0

And line is perpendicular toline 1, so

—3a+2b+5c=0 -
Solving equation 2 and 3 by cross multiplication,
a B b _ c
25-23 -33-15 (OB
a b C
= = =
10-6 —-9-5 2+6
a b C
= e
4 —-14 8
a b c
2 -7 4 (y)

=a =2\, b=—7X\, c=4X

Putting thevalue of a,b, and c in (1) gives
Xx+1 y—-3 z+2
2 =7\ 4x
x+1 y—-3 z+42
= — —
2 -7 4
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22. (x+1)d—y=2e_y -1

dx
dy  dx
2V -1 x+1
e¥ dx

2-¢ x+1
Integrating both sides, we get:
y
jﬂ:log|x+1|+logc (1)
2—¢¥
Let 2—¢” =t.

.'.i(Z—ey)—E

= e’dy =—-dt

Substituting this value in equation (1), we get:
j_thzlog|x+1|+logC

= —loglt| =log‘C(x+1)‘

= —log[2—¢’|=log|c(x+1)|

1
2—¢

= C(x + 1)
1
(2
C(x+1) 2)
Now, at x=0 and y=0, equation (2) becomes:

:>2—1:1
C

=2-¢e =

=C=1
Substituting C = 1 in equation (2), we get:
1

2-¢y =——
x+1

1
x+1
_2x+2-1
 x+1
ey=2X+1
x+1

=e¥=2—

=e
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2x+1
=y=log

(x#-1)

This is the required particular solution of the given differential equation.

x+1

SECTION -C

23. The given system of equation can be written in the form of AX = B, where

1 -1 2 X 7
A={3 4 -5, X=|Y|andB=|-5].

2 -1 3 Z 12
Now,

|A|=1(12-5)+1(9+10)+2(-3-8)=7+19-22=4+0
Thus, A is non-singular. Therefore, its inverse exists.
Now, A,,=7, A,=-19,A,;=-11

Ay=1, Apy=-1, Ays=-1

A;,=-3,A;,=11, A;;=7

7 1 -3

.-.A'lzi(ade)zl -19 -1 11
A 4

-1 -1 7

OR
Consider the given matrix.

-1 1 2
LetA=|1 2 3
3 11

We know that, A=1 A
Perform sequence of elementary row operations on A on the
left hand side and the term [, on the right hand side till we obtain the
result,
I, =BA
Thus, B=A""
1 00
Here,I; =0 1 0
0 01
Thus,we have,
-1 1 2 1 00
1 2 3|=(01 0|A
0 01
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R, &R,
1 2 3
-1 1 2|=
3 11
R, >R, +R,
R, >R, -3R,
1 2 3]
0 3 5 |=
0 -5 -8]
R, >R, +R,
1 5 8]
0 3 5 |=
0 -5 -8]
R; >R, +R;
1 0 0
0 3 5 |=
0 -5 -8
R
R, >—2
3
1 0 0]
0 1 5
3
0 -5 -8
R; ->R; +5R,
10 0 1
() 1 521
3 3
0 0 1 E
i 3] |3
1 0 0] [1
() 1 521
3 3
0 0 1) |5
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5
R, >R, R,

1 0 0 1 -1 1
01 0|=|-8 7 -5|A
0 0 1 5 -4 3

Thus the inverse of the matrix A is given by

1 -1 1
-8 7 -5
5 -4 3

24. Let the manufacturer produce x packages of nuts and y packages of bolts.
Therefore,x>20and y = 0.
The given information can be complied in a table as follows.

Nuts | Bolts | Availability
Machine A (h) 1 3 12
Machine B (h) 3 1 12

The profit on a package of nuts is Rs. 17.50 and on a package of bolts is Rs. 7.
Therefore, the constraints are

x+3y<12

3x+y=<12

Total profit, Z =17.5x + 7y

The mathematical formulation of the given problem is

Maximise Z=17.5x+ 7y  ...(1)

Subject to the constraints,

x+3y<12 - (2)
3x+y<12 - (3)
x,y20 - (4)

The feasible region determined by the system of constraints is as follows:

- -
Ol 1 23 45678 910ll121k
Y v+3=12
W
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The corner points are A(4, 0), B(3, 3), and C(0, 4).
The values of Z at these corner points are as follows:

Corner point Z=175x+7y
0(0,0) 0
A(4,0) 70
B(3, 3) 73.5 =>Maximum
C(0,4) 28

The maximum value of Z is Rs. 73.50 at (3, 3).
Thus, 3 packages of nuts and 3 packages of bolts should be produced each day to get the
maximum profit of Rs. 73.50.

We know that, equation of a plane passing through 3 points,
X1 ¥Yy1 77
XpX1 YY1 Zp7Zq|=0
X3X1 ¥Y3V1 2377
x—3 y+1 z-2
= 2 3 2 (=0
—4 0 4
= x—3 12-0 —y+1 8+8 +z—2 0+12 =0
=12x—-36—-16y —16+12z—-24=0
=12x—-16y +12z—76=0
=3x—4y+32—-19=0
Also ,perpendicular distance of P(6, 5, 9) totheplane 3x —4y +3z—-19=0
_ Bx6—4x5+3x9-19
B J9+16+9

6 .
= units

3
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fO“/4 tanx ++/cotx dx
_fﬂ/4[x/smx N \/cosx]dX

-0 \/cosx \/sinx

_ pn/4| sinx +cosx

= ——|dx
0 [\/sinxcosx]

:\/Ef(f/‘} smx+cosx]dX

\IZSinxcosx

:\/Ef(f/‘} sinx + cosx 2 dx
\/1— sinx —cosx

Put sinx —cosx =t = (cosx +sinx)dx =dt
Ifx=0,t=0-1=-1
K 1 1

t=————==0
4 2 2

. [ Jtanx ++Jeotx dx=+2 [° P
0 2

and if x=

:\/E[sinfl t}:
:\/E[sin_l 0— sin_l(— 1)}
—\

04—
2

=2xZ
2

OR
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ff 2x* +5x dx

Here, a=1,b=3,f(x)=2x" +5x

s.nhh=b—a=3-1=2

Now [ f(x)dx = Limh f(a) +f(a +h) +f(a +2h) +... + f(a +(n —1)h)
,',ff‘ 2x* +5x dx

=Limh (1) +f(1+h) +f(1 +2h) +...+ f(1 +(n —1)h)

) 2017 +5(1) + 2(1+hY +5(1+h) + €1+2h) +5(1+2h) ).
=Lim
h0 + €1+ —1hY +5(1+{n—1h) )
7+ €h* +9h+7 ) 6h® +18h+7 )..
=Limh ( ) ( ' " }
h—0 + QH_l)zhz —|—9(1’1—1)h+7

=Limh|7n+2h* € +2* +.+(n—1 )% (+2+...+(n—1)j)

h—0
— Limh|7n 4 2p? MR =D@n=1) o) n(n= 1)]

h—0 6 2
_ %1151 7nh 42 nh(nh — h6) (2nh —h) 49 nh(ng = h)]

=Lim|14 42

h—0

2(2—h)(4—h) 19 2(2 —h)]
2

—14+ 22 418= 112
3 3

Let r and h be the radius and height of the cylinder. Then,
A= 2nrh+2nr? (Given)

A - 2mr?
B 2nr

=h

Now, Volume(V) = nr*h

2
2 m]zz Ar 3

2

=V=mr

27r

SV L e (1)
dr 2

d’v 1
- == _127r (2
72 0 (2)

VAR

(1
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Now,d—v_O 1 A—67r’ =0
dr
, A A
=>r'=—=r=,|—
6T 6T
2
Now,i—\zl :% —127 /? <0
r A T
WE

Therefore, Volume is maximum at r = /6A
T

A
Sri="s6n’=A

67
= 6nr? = 2nrh + 2nr?

= 4nr? =2nrh=2r=h
Hence, the volume is maximum if its height is equal to its diameter.

. Consider the following events:

E1= Getting 5 OR 6 in a single throw of the die

E2= Getting 1, 2, 3 OR 4 in a single throw of the die
A = Getting exactly 2 heads

We have to find, P(Ez/A).

Since P(E, /A)= P(A/E,)P(E,)
P(A/E, )P(E, )+ P(A/E,)P(E,)
2 1 4 2

Now, P(E,)=—=—and P(E,)=—=—
ow, P(E;) - and P(E,) P
Also,

3
P(A /E, ) =Probability of getting exactly 2 heads when a coin is tossed 3 times= 3

1
And, P(A/E,)=Probability of getting 2 heads when a coin is tossed 2 times= >

1 2 1 1
273 3 3 8
~P(E, /A)= = - _9
(2/)311213 1/8+3) 11
—X—t+—x— = =+1]| = —
8 3 2 3 3.8 3\ 8
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29. Given equations are:
3x-y=3 ..(1)
2x+y=12 ..(2)
x-2y=1 ..(3)
To Solve (1) and (2),
(1)+(2) =5x=15=x=3
(2) =>y=12-6=6
Thus (1) and (2) intersect at C(3, 6).
To solve (2) and (3),
(2)-2(3) =5y=10 =y=2
(2) > 2x=12-2=10 => x=5

Thus (2) and (3) intersect at B(5, 2).
To solve (3) and (1),

2(1)-(3) =5x=5=x=1 la
3)=1-2y=1=y=0

Thus (3) and (1) intersect at A(1, 0).

Area = jf(3x —3)dx + j§(12 —2x)dx —jf%(x —1)dx
- 3 5
2 3 2
=3 X——X +[12x—x2] \ X——X
2 3 2|2 .

A3 o 02 ]

_33,1 +[35—27]—l 5,1
272 2|2 2

=6+8-4=10 sq. units
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