SET – 2

Series : SSO/1/C	Code No.
· .	परीक्षार्थी कोड को उत्तर-प

रोल नं.

Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ

पर अवश्य लिखें ।

Candidates must write the Code or

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय :3 घंटे] [अधिकतम अंक :70

Time allowed: 3 hours] [Maximum Marks: 70

सामान्य निर्देश:

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक निर्धारित हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक निर्धारित हैं ।
- (v) प्रश्न-संख्या 23 मल्याधारित प्रश्न है और इसके लिए 4 अंक निर्धारित हैं ।
- (vi) प्रश्न-संख्या 24 से 26 दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) यदि आवश्यक हो तो **लॉग टेबल** का उपयोग कर सकते हैं । **कैलकुलेटर** के उपयोग की अनुमित **नहीं** है ।

56/1/2 1 [P.T.O.

General Instructions:

- (i) All questions are compulsory.
- (ii) Q. No. 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Q. No. 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Q. No. 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Q. No. 23 is a value based question and carry 4 marks.
- (vi) Q. No. 24 to 26 are long answer questions and carry 5 marks each.
- (vii) Use log tables if necessary, use of calculator is not allowed.
- सतह रसायन के संदर्भ में डायालिसिस को परिभाषित कीजिए ।
 In reference to surface chemistry, define dialysis.
- 2. कॉम्प्लेक्स $[Ni(NH_3)_6]Cl_2$ का आई यू पी ए सी (IUPAC) नाम लिखिए । What is the IUPAC name of the complex $[Ni(NH_3)_6]Cl_2$?
- निम्न यौगिक की संरचना आरेखित कीजिए ।
 मेथिलपेन्टैनैल
 Draw the structure of 3-methylpentanal.
- 4. निम्न अभिक्रिया समीकरण को पूर्ण कीजिए :

$$C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow - - -$$

Complete the following reaction equation :

$$C_6H_5N_2Cl + H_3PO_2 + H_2O \longrightarrow - - -$$

5. एक अंत: केन्द्रित घनीय संरचना में परमाणुओं की संख्या प्रति एकक कोष्टिका (z) क्या होती है ? What is the no. of atoms per unit cell (z) in a body-centred cubic structure ? $\frac{56}{12}$

6. 'असमानानुपातन' का क्या तात्पर्य है ? जलीय विलयन में असमानानुपातन अभिक्रिया का उदाहरण दीजिए ।

अथवा

संक्रमण धातु रसायन के निम्न लक्षणों के लिये कारण सुझाइए :

- (i) संक्रमण धातुएँ और उनके यौगिक सामान्यता अनुचुम्बकीय होते हैं ।
- (ii) संक्रमण धातुएँ परिवर्तनशील उपचयन अवस्थाएँ प्रदर्शित करती हैं ।

What is meant by 'disproportionation'? Give an example of a disproportionation reaction in aqueous solution.

OR

Suggest reasons for the following features of transition metal chemistry:

- (i) The transition metals and their compounds are usually paramagnetic.
- (ii) The transition metals exhibit variable oxidation states.
- 7. एथैनॉल के निर्जलीकरण की प्रक्रिया के चरणों की व्याख्या कीजिए :-

$$CH_3CH_2OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

Explain the mechanism of dehydration steps of ethanol:-

$$CH_3CH_2OH \xrightarrow{H^+} CH_2 = CH_2 + H_2O$$

- 8. विलयन के परासरणी दाब को परिभाषित कीजिए । विलयन में विलय के सांद्रण से परासरणी दाब कैसे संबन्धित है ? Define osmotic pressure of a solution. How is the osmotic pressure related to the concentration of a solute in a solution ?
- 9. निम्नलिखित को परिभाषित कीजिए :
 - (i) अभिक्रिया की अर्धायु $(t_{1/2})$
 - (ii) वेग स्थिरांक (k)

Define the following terms:

- (i) Half-life of a reaction $(t_{1/2})$
- (ii) Rate constant (k)

- 10. निम्नों की संरचनाएँ आरेखित कीजिए :
 - (i) H_2SO_4
 - (ii) XeF₂

Draw the structures of the following:

- (i) H₂SO₄
- (ii) XeF₂
- 11. निम्न कॉम्प्लेक्सों द्वारा जो समावयवता के प्रकार प्रदर्शित होते हैं उनका संकेत कीजिए :
 - (i) $[Co(NH_3)_5(NO_2)]^{2+}$
 - (ii) $[Co(en)_3]Cl_3$ (en = एथिलीन डाइऐमीन)
 - (iii) $[Pt(NH_3)_2Cl_2]$

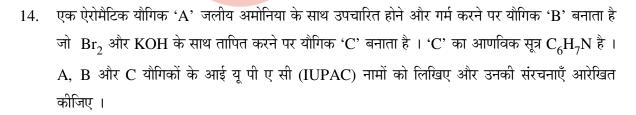
Indicate the types of isomerism exhibited by the following complexes:

- (i) $[\text{Co(NH}_3)_5(\text{NO}_2)]^{2+}$
- (ii) $[Co(en)_3]Cl_3$ (en = ethylene diamine)
- (iii) $[Pt(NH_3)_2Cl_2]$
- 12. निम्न के आई यू पी ए सी (IUPAC) नाम दीजिए :
 - (i) $CH_3 CH CH_2 CH_3$ OH

$$(ii) \quad \begin{array}{c} Br \\ CH_3 \end{array}$$

$$\begin{array}{ccc} & \text{CH}_3 \\ \text{(iii)} & \text{CH}_3 & -\text{C}-\text{CH}_2-\text{C}l \\ & \text{CH}_3 \end{array}$$

Name the following according to IUPAC system:


$$\begin{array}{ccc} \text{(i)} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \text{OH} \end{array}$$

$$\begin{array}{ccc} & \text{CH}_3 \\ \mid & \mid & \text{CH}_3 \\ -\text{C} - & \text{CH}_2 - \text{C}l \\ \mid & \text{CH}_3 \end{array}$$

- 13. निम्न रूपांतरण कैसे किये जाते हैं ?
 - (i) प्रोपीन को प्रोपेन-2-ऑल में ।
 - (ii) बेन्ज़िल क्लोराइड को बेन्ज़िल ऐल्कोहॉल में ।
 - (iii) ऐनिसोल को p-ब्रोमोऐनिसोल में ।

How are the following conversions carried out?

- (i) Propene to propane-2-ol
- (ii) Benzyl chloride to Benzyl alcohol
- (iii) Anisole to p-Bromoanisole

An aromatic compound 'A' on treatment with aqueous ammonia and heating forms compound 'B' which on heating with Br_2 and KOH forms a compound 'C' of molecular formula C_6H_7N . Write the structures and IUPAC names of compounds A, B and C.

56/1/2 5 [P.T.O.

- 15. विटामिनें कैसे वर्गीकृत की जाती हैं ? रक्त के स्कंदन के जो विटामिन उत्तरदायी होते हैं उनके नाम दीजिए । How are vitamins classified ? Name the vitamin responsible for the coagulation of blood.
- 16. निम्न बहुलकों के एकलकों के नाम और उनकी संरचनाएँ लिखिए :
 - (i) बूना-S
 - (ii) नीओप्रीन
 - (iii) टेफ्लॉन

Write the names and structures of the monomers of the following polymers:

- (i) Buna-S
- (ii) Neoprene
- (iii) Teflon
- 17. परिभाषित कीजिए:
 - (i) शॉटकी दोष
 - (ii) फ्रेंकेल दोष
 - (iii) F-केंद्र

Define the following:

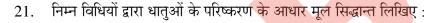
- (i) Schottky defect
- (ii) Frenkel defect
- (iii) F-centre
- 18. एथिलीन ग्लाइकोल (${
 m C_2H_4O_2}$) का $45~{
 m g}$ जल के $600~{
 m g}$ के साथ मिलाया गया है । परिकलित कीजिए ।
 - (i) हिमांक का अवनमन और
 - (ii) विलयन का हिमांक

(दिया गया है : K_f का मान पानी के लिए = 1.86 $K~kg~mol^{-1}$)

45 g of ethylene glycol (C₂H₄O₂) is mixed with 600 g of water. Calculate

- (i) the freezing point depression and
- (ii) the freezing point of the solution

(Given : K_f of water = 1.86 K kg mol⁻¹)


19. 500 K और 700 K पर एक अभिक्रिया का दर स्थिरांक क्रमशः $0.02~\rm s^{-1}$ और $0.07~\rm s^{-1}$ है । सिक्रयण ऊर्जा, E_a का परिकलन कीजिए । ($R=8.314~\rm J~K^{-1}~mol^{-1}$)

The rate constants of a reaction at 500 K and 700 K are 0.02 s^{-1} and 0.07 s^{-1} respectively. Calculate the value of activation energy, E_a . (R = 8.314 J K⁻¹ mol⁻¹)

- 20. निम्न पदों को परिभाषित कीजिए:
 - (i) इलेक्ट्रोफोरेसिस
 - (ii) अधिशोषण
 - (iii) शेप-सेलेक्टिव (आकृति आधारित) उत्प्रेरण

Define the following terms:

- (i) Electrophoresis
- (ii) Adsorption
- (iii) Shape selective catalysis

- (i) आसवन
- (ii) जोन परिष्करण
- (iii) वैद्युत अपघटन

अथवा

आयरन के निष्कर्षण के <mark>समय ब्लास्ट फर्नेस</mark> के विभिन्न भागों जो अभिक्रियाएँ होती हैं उन्हें लिखिए । ढलवें लोहे से कच्चा (Pig) लोहा कैसे भिन्न होता है ?

Outline the principles of refining of metals by the following methods:

- (i) Distillation
- (ii) Zone refining
- (iii) Electrolysis

OR

Write down the reactions taking place in different zones in the blast furnace during the extraction of iron. How is pig iron different from cast iron?

56/1/2 7 [P.T.O.

22. लैन्थेनॉयड संकुचन क्या है ? लैन्थेनॉयड संकुचन के क्या परिणाम होते हैं ?

What is lanthanoid contraction? What are the consequences of lanthanoid contraction?

- 23. रमेश एक डिपार्टमेन्टल स्टोर में गया वहाँ उसे कुछ घर के लिये सामान खरीदना था । एक खाने में उसने शुगर-फ्री टिकियाँ देखी । उसने उन्हें अपने दादा के लिये खरीदने का निर्णय किया जो शुगर के मरीज थे । तीन प्रकार की शुगर-फ्री टिकियाँ मौजूद थीं । रमेश ने सुक्रोलोस खरीदने का निश्चय किया जो उसके दादा के स्वास्थ्य के लिये अच्छी थीं ।
 - (i) एक अन्य शुगर फ्री टिकिया का उल्लेख कीजिए जिसे रमेश ने नहीं खरीदा ।
 - (ii) बिना डॉक्टर की पर्ची के ऐसी दवा खरीदना क्या रमेश के लिए उचित था ?
 - (iii) उपरोक्त विवर्ण से रमेश का कौन सा गुण प्रदर्शित होता है ?

Ramesh went to a departmental store to purchase groceries. On one of shelves he noticed sugar-free tablets. He decided to buy them for his grandfather who was a diabetic. There were three types of sugar-free tablets. Ramesh decided to buy sucrolose which was good for his grandfather's health.

- (i) Name another sugar free tablet which Ramesh did not buy.
- (ii) Was it right to purchase such medicines without doctor's prescription?
- (iii) What quality of Ramesh is reflected above?
- 24. (a) निम्न रासायनिक समीकरणों को पूर्ण कीजिए:
 - (i) $Cu + HNO_{3(\overline{\neg \neg})}$ →
 - (ii) $P_4 + NaOH + H_2O \rightarrow$
 - (b) (i) क्यों $R_3P = O$ बनता है परन्तु $R_3N = O$ नहीं बनता है ? (R = एिक्किल ग्रुप)
 - (ii) डाइऑक्सीजन क्यों एक गैस है परन्तु सल्फर एक ठोस है ?
 - (iii) हैलोजन क्यों रंगयुक्त होते हैं ?

अथवा

- (a) निम्न अभिक्रियाओं के लिए संतुलित रासायनिक समीकरण लिखिए :
 - (i) बुझे चुने के साथ क्लोरीन अभिक्रिया करती है ।
 - (ii) कार्बन सांद्र ${
 m H_2SO_4}$ से अभिक्रिया करता है ।
- (b) सल्फ्यूरिक अम्ल को कांटैक्ट विधि से बनाने का निम्न संदर्भों, जैसे अधिकतम उत्पाद, उत्प्रेरण और अन्य स्थिति में वर्णन कीजिए ।
- (a) Complete the following chemical reaction equations:
 - (i) $Cu + HNO_{3(dilute)} \rightarrow$
 - (ii) $P_4 + NaOH + H_2O \rightarrow$
- (b) (i) Why does $R_3P = O$ exist but $R_3N = O$ does not ? (R = alkyl group)
 - (ii) Why is dioxygen a gas but sulphur a solid?
 - (iii) Why are halogens coloured?

OR

- (a) Write balanced equations for the following reactions:
 - (i) Chlorine reacts with dry slaked lime.
 - (ii) Carbon reacts with concentrated H₂SO₄.
- (b) Describe the contact process for the manufacture of sulphuric acid with special reference to the reaction conditions, catalysts used and the yield in the process.
- 25. (a) निम्न अभिक्रियाओं का रासायनिक समीकरणों की देते हुए वर्णन कीजिए:
 - (i) डीकार्बोक्सिलीकरण अभिक्रिया
 - (ii) फ्राइडेल-क्रैफ्ट अभिक्रिया
 - (b) आप निम्न रूपांतरण कैसे करेंगे ?
 - (i) बेन्ज़ोइक अम्ल को बेन्जैल्डिहाइड में
 - (ii) बेन्ज़ीन को m-नाइट्रोएसीटाफीनोन में
 - (iii) एथैनॉल को 3-हाइड्रॉक्सी ब्यूटैनैल में

अथवा

56/1/2 9 [P.T.O.

- (a) निम्न क्रियाओं का वर्णन कीजिए:
 - (i) एसीटिलीकरण
 - (ii) ऐल्डोल संघनन
- (b) निम्नलिखित अभिक्रियाओं के मुख्य उत्पाद को लिखिए :

(i)
$$CH_3 - C - CH_3 \xrightarrow{LiA/H_4}$$
?

(ii)
$$\frac{\text{CHO}}{\frac{\text{HNO}_3 / \text{H}_2 \text{SO}_4}{273 - 283 \text{ K}}}?$$

(iii)
$$CH_3 - COOH \xrightarrow{PCl_5}$$
?

- (a) Describe the following giving chemical equations:
 - (i) De-carboxylation reaction
 - (ii) Friedel-Crafts reaction
- (b) How will you bring about the following conversions?
 - (i) Benzoic acid to Benzaldehyde
 - (ii) Benzene to m-Nitroacetophenone
 - (iii) Ethanol to 3-Hydroxybutanal

OR

- (a) Describe the following actions:
 - (i) Acetylation (ii) Aldol condensation
- (b) Write the main product in the following equations:

(i)
$$CH_3 - C - CH_3 \xrightarrow{LiAlH_4}$$
?

(ii)
$$\frac{\text{CHO}}{\frac{\text{HNO}_3 / \text{H}_2 \text{SO}_4}{273 - 283 \text{ K}}}?$$

(iii)
$$CH_3 - COOH \xrightarrow{PCl_5} ?$$

- 26. (a) निम्नलिखित को परिभाषित कीजिए :
 - (i) मोलर चालकता (^m)
 - (ii) संचायक बैटरियाँ
 - (iii) ईंधन सेल
 - (b) निम्नलिखित नियमों को लिखिए:
 - (i) फैराडे के वैद्युतअपघटन का प्रथम नियम
 - (ii) कोलराऊश के आयनों के स्वतंत्र अभिगमन का नियम

अथवा

- (a) वियोजन की डिग्री को परिभाषित कीजिए । एक व्यंजक लिखिए जो दुर्बल विद्युत्-अपघट्य की मोलर चालकता को इसके वियोजन की डिग्री से संबन्धित होता है ।
- (b) सेल अभिक्रिया

$$Ni_{(s)} | Ni^{2+}_{(aq)} | | Ag^{+}_{(aq)} | Ag_{(s)}$$

के लिये 25 °C पर तुल्य स्थिरांक परिकलित कीजिए । इस सेल के काम करने पर अधिकतम कितना कार्य प्राप्त होता है ?

$$E^{\circ}_{Ni^{2+}/Ni} = 0.25 \text{ V}, \ E^{\circ}_{Ag^{+}/Ag} = 0.80 \text{ V}.$$

- (a) Define the following terms:
 - (i) Molar conductivity (\land_m)
 - (ii) Secondary batteries
 - (iii) Fuel cell
- (b) State the following laws:
 - (i) Faraday first law of electrolysis
 - (ii) Kohlrausch's law of independent migration of ions

OR

- (a) Define the term degree of dissociation. Write an expression that relates the molar conductivity of a weak electrolyte to its degree of dissociation.
- (b) For the cell reaction

$$Ni_{(s)} | Ni^{2+}_{(aq)} | | Ag^{+}_{(aq)} | Ag_{(s)}$$

Calculate the equilibrium constant at 25 °C. How much maximum work would be obtained by operation of this cell ?

$$E^{\circ}_{Ni^{2+}/Ni} = 0.25 \text{ V} \text{ and } E^{\circ}_{Ag^{+}/Ag} = 0.80 \text{ V}.$$

CHEMISTRY MARKING SCHEME SET -56/1/2 Compt. July, 2015

Qu	Value points	Marks
es.		
1	It is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane.	1
2	Hexaamninenickel (II) chloride	1
3	CH ₃ - CH ₂ - CH - CH ₂ - CHO CH ₃	1
4	$ArN_2Cl + H_3PO_2 + H_2O \longrightarrow ArH + N_2 + H_3PO_3 + HCl$ (where Ar is C_6H_5)	1
5	2	1
6	Disproportionation: The reaction in which an element undergoes self-oxidation and self-	1
	reduction simultaneously. For example – $2Cu^+$ (aq) + $Cu(s)$ (Or any other correct equation)	1
	OR	
6	i) Due to presence of unpaired electrons in d-orbitals.ii) Due to incomplete filling of d-orbitals.	1 1
7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
8	The external pressure which is applied on solution side to stop the flow of solvent across the semi-permeable membrane.	1
	The osmotic pressure is directly proportional to concentration of the solution. $/\pi = CRT$	1

-		1
9	The half-life of a reaction is the time in which the concentration of a reactant is reduced to one-	1
	half of its initial concentration.	
	Rate constant is the rate of reaction when the concentration of the reactant is unity.	1
10	i) F Xe	1+1
11	a) Linkage isomerism	1
	b) Optical isomerism	1
	c) Cis - trans / Geometrical isomerism	1
12	a) Butan – 2 – ol	1
	b) 2 – bromotoluene	1
	c) 2, 2-dimethylchlorpropane	1
13	i) $CH_{3}CH = CH_{2} + H_{2}O \xrightarrow{H^{+}} CH_{3} - CH - CH_{3}$ ii)	1
	iii) CH ₂ Cl CH ₂ ONa CH ₂ OH H OCH ₃ OCH ₃ Br ₂ in Ethanoic acid CH ₂ ONa CH ₂ OH H OCH ₃ OCH ₃ Br Br	1
	Anisole Br	1
14	COOH	1/2 +
	A – Benzoic acid	1/2
	$B - $ Benzamide NH_2	1/2 + 1/2
	C - Aniline	

		1/2 +
		1/2
15	Fat soluble vitamin- Vitamin A, D Water soluble vitamin-Vitamin B,C	1/2+1/2
	Vitamin K	1/2+1/2
16	i)	1/2 +
	$CH_2 = CH - CH = CH_2$ and $C_6H_5CH=CH_2$	1/2
	1, 3-Butadiene Styrene	
	ii)	
		1/
	Cl CH ₂ =C-CH=CH ₂	$\frac{1}{2} + \frac{1}{2}$
		/2
	Chloroprene /2-Chloro-1, 3-butadiene	
	iii)	1/2 +
	$CF_2 = CF_2$	1/2
	Tetrafluoroethene	
17	i) The defect in which equal number of cations and anions are missing from the lattice.	1
	ii) Due to dislocation of smaller ion from its normal site to an interstitial site.	1
18	iii) Anionic vacancies are occupied by unpaired electron. i) $\Delta T_f = K_f m$	1/2
10	$\Delta T_f = K_f \frac{W_B \times 1000}{M_B \times W_A}$	1/2
	i) $\Delta T_f = K_f m$ $\Delta T_f = K_f \frac{w_B \times 1000}{M_B \times w_A}$ $\Delta T_f = \frac{1.86K \ kg \ mol^{-1} \ x \ 45g \ x \ 1000 \ g \ kg^{-1}}{60g mol^{-1} \ x \ 600 \ g}$ $\Delta T_f = 2.325K \ or \ 2.325^0 \ C$	
	$\Delta T_c = \frac{1.86K kg mol^{-1} x 45g x 1000 g kg^{-1}}{1.86K kg mol^{-1} x 45g x 1000 g kg^{-1}}$	
	$\Delta T_{\rm f} = \frac{1.86K kg mol^{-1} x 45g x 1000 g kg^{-1}}{60g mol^{-1} x 600 g}$ $\Delta T_{\rm f} = 2.325K \text{or} 2.325^{0} \text{C}$	1
	ii) $T_1^0 - T_1 = 2.325^0 C$	
	$O^{0}C - T_{f} = 2.325^{0}C$	1
	$T_f = -2.325^0 \mathrm{C}$ or 270.675 K	1
19	k_2 E_2 $T_2 - T_1$	1
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	
		1
	$\log \frac{0.07}{0.02} = \left(\frac{E_{a}}{2.303 \times 8.314 \text{JK}^{-1} \text{mol}^{-1}} \right) \left[\frac{700 - 500}{700 \times 500} \right]$	
	$0.544 = E_a \times 5.714 \times 10^{-4}/19.15$	1
	$E_{\rm a} = 0.544 \times 19.15/5.714 \times 10^{-4} = 18230.8 \text{ J}$	_
20	i) The movement of colloidal particles under an applied electric potential towards oppositely	1
	charged electrode is called electrophoresis. ii) The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid	1
	is termed adsorption.	1
	iii) The catalytic reaction that depends upon the pore structure of the catalyst and the size of the	
	reactant and product molecules is called shape-selective catalysis.	

21		T 4
21	i) The impure metal is evaporated to obtain the pure metal as distillate.	1
	ii) This method is based on the principle that the impurities are more soluble in the melt than in the solid state of the metal.	1
	iii) The impure metal is made to act as anode. A strip of the same metal in pure form is used as	
	cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal.	1
	The more basic metal remains in the solution and the less basic ones go to the anode mud.	1
	OR	
	$3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2$	½ x 4
	(Iron ore)	= 2
	$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$	
	$CaCO_3 \rightarrow CaO + CO_2$	
	(Limestone)	
	$CaO + SiO_2 \rightarrow CaSiO_3$	
	(Slag) $FeO + CO \rightarrow Fe + CO_2$	
	$C + CO_2 \rightarrow 2CO$	
	Coke	
	$C + O_2 \rightarrow CO_2$	
	FeO + C → Fe + CO (any four correct equations)	
	Cast iron has lower carbon content (about 3%) than pig iron / cast iron is hard & brittle whereas	
	pig iron is soft.	1
22	The steady decrease in atomic radii from La to Lu due to imperfect shielding of 4f – orbital.	1
	Consequences –	
	i) Members of third transition series have almost identical radii as coresponding members	
	of second transition series. ii) Difficulty in separation.	1+1
	ii) Difficulty iii separation.	1+1
23	i) Aspartame, Saccharin (any one)	1
	ii) No	1
	iii) Social conce <mark>rn, em</mark> pathy, concern, social awareness (any 2)	2
24	$_{a)}$ $_{i)}$ $3Cu + 8 HNO_3(dilute) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$	1
	$_{ii)}P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
	b) i) Due to absence of d-orbital, nitrogen cannot expand its valency beyond four.	1
	ii) Because of $p\pi - p\pi$ multiple bonding in dioxygen which is absent in sulphur.	1
	iii) Due to excitation of electron by absorption of radiation from visible region.	1
	OR	
	$_{\rm a)\ i)}$ 2Ca(OH) ₂ + 2Cl ₂ \rightarrow Ca(OCl) ₂ + CaCl ₂ + 2H ₂ O	1
	$C + 2H_2SO_4(conc.) \rightarrow CO_2 + 2 SO_2 + 2 H_2O$	1
	b) It is manufactured by Contact Process which involves following steps:	
	i) burning of sulphur or sulphide ores in air to generate SO_2 .	
	ii) conversion of SO_2 to SO_3 by the reaction with oxygen in the presence of a catalyst (V_2O_5) iii) absorption of SO_3 in H_2SO_4 to give <i>Oleum</i> $(H_2S_2O_7)$. The oleum obtained is diluted to give	
	sulphuric acid	1
	•	1
	$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g)$	
	Reaction condition – pressure of 2 bar and temperature of 720 K	1
	Catalyst used is V ₂ O ₅	1

	Yield – 96 – 98% pure	
25	a) i) Carboxylic acids lose carbon dioxide to form hydrocarbons when their sodium salts are	1
23	heated with sodalime (NaOH and CaO).	1
	$R-\frac{\text{NaOH & CaO}}{\text{R-H + Na_2CO_3}}$	
	Heat	
	ii) When the alkyl / acyl group is introduced at ortho and para positions by reaction	
	with alkyl halide / acyl halide in the presence of anhydrous aluminium chloride (a Lewis	
	acid) as catalyst.	
	OCH ₃	
	OCH ₃	
	+CH ₃ Cl Anhyd. AlCl ₃ +	
	+CH ₃ Cl — CS +	
	CH ₃	1
	(Note: Award full marks if correct equation is given)	
	b) i)	
	COOH COCI CHO	
	PCl₅ H₂/Pd-BaSO4	
	ii)	1
	and	1
	NO ₂ NO ₂	
	HNO ₃ / H2SO ₄ CH ₃ COCl / AlCl ₃	
	HNO ₃ / H2SO ₄ CH ₃ COCl / AlCl ₃	
	COCH ₃	
	iii)	
		1
	CH ₃ CH ₂ OH $\xrightarrow{\text{CrO}_3}$ CH ₃ -CHO $\xleftarrow{\text{dil. NaOH}}$ CH ₃ -CH-CH ₂ -CHO	
	ОН	
	(or any other correct method)	
	OR	1
25	a) i) When the acyl groups are introduced at ortho and para positions by reaction with acyl halide in the	1
	presence of anhydrous aluminium chloride (a Lewis acid) as catalyst.	
	Cl Cl Cl	
	Anhyd. AlCl ₃ CH ₃	
	+ n ₃ c-c-ci	
	· · · · · · · · · · · · · · · · · · ·	
	O CH ₃	
	ii) Aldehydes and ketones having at least one ∝-hydrogen undergo a reaction in the presence of	
	dilute alkali as catalyst to form ∝-hydroxy aldehydes (aldol) or ∝ −hydroxy ketones (ketol),	1
	respectively.	1
		l

	III IV AVI	
	2 CH ₃ -CHO ← CH ₃ -CH-CH ₂ -CHO	
	OH	
	(Note: Award full marks if correct equation is given)	
	b)i)	1
	$CH_3 - CH - CH_3$	
	OH	
	ii)	
	, and the second	
	O_2N	1
	/ -	
	CHO	1
		1
	:::\	
26	a)i)Molar conductivity of a solution at a given concentration is the conductance of the volume <i>V</i>	1
20	of solution containing one mole of electrolyte kept between two electrodes with area of cross	1
	section A and distance of unit length.	
	ii) Secondary battery- can be recharged by passing current through it in opposite direction so that	
	it can be used again.	1
	iii) Galvanic cells that are designed to convert the energy of combustion of fuels like hydrogen,	1
	methane, methanol, etc. directly into electrical energy are called fuel cells.	1
	b)i) The amount of chemical reaction which occurs at any electrode during electrolysis by a	
	current is proportional to the quantity of electricity passed through the electrolyte (solution or	1
	melt).	
	ii) Limiting molar conductivity of an electrolyte can be represented as the sum of the individual	
	contributions of the anion and cation of the electrolyte.	1
	OR	
26	a) Degree of dissociation is the extent to which electrolyte gets dissociated into its constituent	1
	ions.	1
	$\alpha = \frac{\Lambda_m}{\Lambda_n^2}$	
	$a - \frac{1}{A_{-}}$	
	b) $E^0 \text{cell} = E^0_{\text{Ag+/Ag}} - E^0_{\text{Ni2+/Ni}}$	
	= 0.80V - 0.25V	1/2
	= 0.55 V	1/2
	$\log K_{c} = \left(\frac{nE^{0}cell}{0.059}\right)$	'-
	$=\frac{2x0.55V}{0.059}$	
	$\frac{-0.059}{0.059}$	1/2
	$ \log K_c = 18.644 $ $ \Delta G^0 = - \text{ nFE}^0 \text{cell} $	1/2
	$= -2x96500 \text{ Cmol}^{-1} \times 0.55V$	1
	$=-106,150 \text{ Jmol}^{-1}$	1
	$Max.work = +106150 \text{ Jmol}^{-1} \text{ or } 106.150 \text{ Jmol}^{-1}$	

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani

