RD Sharma
Solutions
Class 12 Maths
Chapter 3
Ex 3.5

Binary Operations Ex 3.5 Q1

 $a \times_4 b$ = the remainder when ab is divided by 4.

eg. (i)
$$2 \times 3 = 6 \Rightarrow 2 \times_4 3 = 2$$

[When 6 is divided by 4 we get 2 as remainder]

(ii)
$$2 \times 3 = 4 \Rightarrow 2 \times_4 2 = 0$$

[When 4 is divided by 4 we get 0 as remainder]

The composition table for x_4 on set $S = \{0, 1, 2, 3\}$ is:

X4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

 $a +_5 b =$ the remainder when a + b is divided by 5.

eq.

 $2+4=6 \Rightarrow 2+_5 4=1$ \because [we get 1 as remainder when 6 is divided by 5]

 $2 + 4 = 7 \Rightarrow 3 +_5 4 = 2$

 $\sqrt{\text{we get 2 as remainder when 7 is divided by 5}}$

The composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$.

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	Э

Binary Operations Ex 3.5 Q3

 $a \times_6 b =$ the remainder when the product of ab is divided by 6.

The composition table for \times_6 on set $S = \{0, 1, 2, 3, 4, 5\}$.

×6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

 $a \times_5 b$ = the remainder when the product of ab is divided by 5.

The composition table for x_5 on $Z_5 = \{0, 1, 2, 3, 4\}$.

×5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Binary Operations Ex 3.5 Q5

 $a \times_{10} b =$ the remainder when the product of ab is divided by 10.

The composition table for \times_{10} on set $S = \{1, 3, 7, 9\}$

7	3	1	×10
7	3	1	1
1	9	3	3
9	1	7	7
3	7	9	9

We know that an element $b \in S$ will be the inverse of $a \in S$

if
$$a \times_{10} b = 1$$

 $\begin{bmatrix} \because \textbf{1} \text{ is the identity element with} \\ \text{respect to multiplication} \end{bmatrix}$

$$\Rightarrow$$
 3 \times_{10} b = 1

From the above table b = 7

: Inverse of 3 is 7.

 $a \times_7 b =$ the remainder when the product of ab is divided by 7.

The composition table for \times_7 on $S = \{1, 2, 3, 4, 5, 6\}$

×7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	o	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

We know that 1 is the identity element with respect to multiplication

Also, b will be the inverse of a if, $a \times_7 b = e = 1$

$$\Rightarrow$$
 $3 \times_7 b = 1$

From the above table $3 \times_7 5 = 1$

$$b = 3^{-1} = 5$$

Now,
$$3^{-1} \times_7 4 = 5 \times_7 4 = 6$$

 $a \times_{11} b =$ the remainder when the product of ab is divided by 11.

The composition table for \times_{11} on Z_{11}

×11	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	3	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	З	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	3	10	7	4	1	9	6	3
9	9	7	5	з	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

From the above table

[v 1 is the identity element]

.. Inverse of 5 is 9.

Binary Operations Ex 3.5 Q8

$$Z_5 = \{0, 1, 2, 3, 4\}$$

 $a \times_5 b =$ the remainder when the product of ab is divided by 5.

The composition table for \times_5 on $Z_5 = \{0, 1, 2, 3, 4\}$

× ₅	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	З	2	1

d = d

 $b^{-1} = b, c^{-1} = d, \text{ and } d^{-1} = c$

Not: a^{-1} does ont exist.

The operation * on X is defined as:

$$a*b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

An element $e \in X$ is the identity element for the operation *, if

the ident
$$X$$
.

Let $X = \{0, 1, 2, 3, 4, 5\}.$

 $a*e=a=e*a \forall a \in X$. For $a \in X$, we observed that:

$$a*0 = a+0 = a$$
 $\left[a \in X \Rightarrow a+0 < 6\right]$

$$a \in X$$

0*a = 0 + a = a $a \in X \Rightarrow 0 + a < 6$

$$a \in X$$

Hence, the inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., $a^{-1} = 6 - a$.

$$a \in X$$
:

Thus, 0 is the identity element for the given operation *.

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$.

Therefore, b = 6 - a is the inverse of $a \in X$.

i.e., $\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b\geq 6 \end{cases}$

i.e.,

a = -b or b = 6 - a

 $\therefore a * 0 = a = 0 * a \forall a \in X$

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

