RD Sharma
Solutions
Class 12 Maths
Chapter 4
Ex 4.1

Inverse Trigonometric Functions Ex 4.1 Q1.

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
. Then, $\tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right)$.

We know that the range of the principal value branch of tan-1 is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.

Therefore, the principal value of $\tan^{-1}(\sqrt{3})$ is $-\frac{\pi}{3}$.

Concept Insight:

The range for \tan^{-1} is same as \sin^{-1} except that it is an open interval, as $\tan(-\pi/2)$ and $\tan(\pi/2)$ are not defined. So the method of finding principal value is same as \sin^{-1} given in the first problem. Also note that $\tan(-x) = -\tan x$.

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of cos-1 is

$$[0,\pi]$$
 and $\cos\left(\frac{3\pi}{4}\right)$. = $-\frac{1}{\sqrt{2}}$

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

Let
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$$
. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of

$$\operatorname{cosec}^{-1} \operatorname{is} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \text{ and } \operatorname{cosec} \left(-\frac{\pi}{4} \right) = -\sqrt{2}.$$

Therefore, the principal value of $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$.

We know that for any $x \in [-1,1]$, $\cos^{-1} x$ represents angle in $[0,\pi]$

$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$
 = an angle in $\left[0,\pi\right]$ whose cosine is $\left(-\frac{\sqrt{3}}{2}\right)$

$$=\pi-\frac{\pi}{6}=\frac{5\pi}{6}$$

$$\therefore \quad \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

We know that, for any $x \in R$, $\tan^{-1} x$ represents an angle in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is x.

So, $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \text{An angle in } \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \text{ whose tangest is } \frac{1}{\sqrt{3}}$

$$\therefore \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}.$$

We know that, for
$$x \in R$$
, $\sec^{-1}x$ represents an angle in $[0,\pi] - \left\{\frac{\pi}{2}\right\}$.

$$sec^{-1}\left(-\sqrt{2}\right)$$
 = An angle in $\left[0,\pi\right]$ - $\left\{\frac{\pi}{2}\right\}$ whose secant is $\left(-\sqrt{2}\right)$ = $\pi - \frac{\pi}{4}$ = $\frac{3\pi}{4}$

$$\sec^{-1}\left(-\sqrt{2}\right) = \frac{3\pi}{4}.$$

We know that, for any $x \in R$, $\cot^{-1}x$ represents an angle in $(0,\pi)$

$$\cot^{-1}\left(-\sqrt{3}\right)$$
 = An angle in $\left(0,\pi\right)$ whose contangent is $\left(-\sqrt{3}\right)$ = $\pi - \frac{\pi}{6}$ = $\frac{5\pi}{6}$

$$\therefore \cot^{-1}\left(-\sqrt{3}\right) = \frac{5\pi}{6}.$$

We know that, for any $x \in R$, $\sec^{-1} x$ represents an angle in $[0, \pi] - \left\{ \frac{\pi}{2} \right\}$.

$$\sec^{-1}(2) = \text{An angle is } [0, \pi] - \left\{\frac{\pi}{2}\right\} \text{ whose secant is 2}$$

$$= \frac{\pi}{3}$$

$$\therefore \sec^{-1}\left(2\right) = \frac{\pi}{3}.$$

We know that, for any $x \in R$. $\csc^{-1}x$ is an angle in $\left[\frac{-\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$

$$\csc^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 = An angle is $\left[\frac{-\pi}{2},0\right] \cup \left(0,\frac{\pi}{2}\right]$ whose cosecant is $\left(\frac{2}{\sqrt{3}}\right)$ = $\frac{\pi}{3}$

$$\therefore \cos ec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{3}.$$

Inverse Trigonometric Functions Ex 4.1 Q2.

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} - \cos\left(\frac{1}{3}\right)$.

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let
$$\sin^{-1}\left(\frac{1}{2}\right) = y$$
. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

$$\therefore \sin^{-1} \frac{1}{2} = \frac{\pi}{6}$$

$$\therefore \tan^{-1} \left[2 \cos \frac{\pi}{6} \right]$$

$$\begin{array}{c}
2 \\
\tan^{-1} \left[2 \right]
\end{array}$$

- $\therefore \tan^{-1} \left[2\cos \left(2\sin^{-1} \frac{1}{2} \right) \right] = \tan^{-1} \left[2\cos \left(2 \times \frac{\pi}{6} \right) \right]$
- $=\tan^{-1}\left[2\cos\frac{\pi}{2}\right]=\tan^{-1}\left[2\times\frac{1}{2}\right]$ $= \tan^{-1} 1 = \frac{\pi}{4}$
- Concept Insight: Solve the innermost bracket first, so first find the principal value of sin-1(1/2)
- Let $\tan^{-1}(1) = x$. Then, $\tan x = 1 = \tan \frac{\pi}{4}$.
- $\therefore \tan^{-1}(1) = \frac{\pi}{4}$
 - Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

 $\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

 $=\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$

 $\therefore \tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$

 $=\frac{3\pi+8\pi-2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}$

- Let $\sin^{-1}\left(-\frac{1}{2}\right) = z$. Then, $\sin z = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

- $\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{2}$

$$\tan^{-1} \sqrt{3} - \sec^{-1} (-2) + \cos ec^{-1} \frac{2}{\sqrt{3}}$$

$$= \frac{\pi}{3} - \frac{2\pi}{3} + \frac{\pi}{3}$$

$$= 0$$

 $\tan^{-1}\left(\sqrt{3}\right)$ = Angle in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ whose tangent is $\sqrt{3}$

 $=\pi-\frac{\pi}{2}$

Hence,

 $\sec^{-1}(-2) = \text{An angle in } \left[0, \pi\right] - \left\{\frac{\pi}{2}\right\} \text{ whose secant is } (-2)$

 $\csc^{-1}\left(\frac{2}{\sqrt{3}}\right)$ = An angle in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \{0\}$ whose cosecant is $\left(\frac{2}{\sqrt{3}}\right)$

:
$$\tan^{-1} \sqrt{3} - \sec^{-1} \left(-\sqrt{2} \right) + \cos ec^{-1} \left(\frac{2}{\sqrt{3}} \right) = 0$$