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Inverse Trigonometric Functions Ex 4.1 Q1.
n 18
Let tan ' [—vﬁ)= v. Then, tany = —J3 =—tan ; - tan[— 3],

We know that the range of the principal value branch of tanis
M T
(—55] and tan[—g] is —/3.

tan ' (\E) is —E.
Therefore, the principal value of 3
Concept Insight:
The range for tan! is same as sin! except thatit is an open interval, as tan(-m/2) and
tan(m/2) are not defined. So the method of finding principal value is same as sin'! given in
the first problem. Also note that tan(—x) =- tan x.

(L., e o cos[ )= ST cos| 3T
Let cos [ﬁ]" Then, cos y= ﬁ_ -:05(4]—::05[:! 4]—cns[4].

We know that the range of the principal value branch of cosis

[0, ] and cos[:a—n] 1
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Therefore.the principal value of cos '[—l] is 3n
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Let cosec (—aﬁ) = y. Then, cosecy = -2 = —cusec[—] =cusa::| —— |
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We know that the range of the principal value branch of

cosecis [—gg} —{0} and cnsec[—g] =2,
T

Therefore, the principal value of cosec™ (—\E] is 7

we know that for any xe[-1,1], cos L ok represents angle in [0,x]

cos L [— g];an angle in [0,n|whose cosine is [— g]
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We know that, for any x 2, tan! x represents an angle in [%,g] whose tangent is x.
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tan~! [%] = an angle in [_E—ﬂ,%] whose tangest is =
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Wwe know that, for x 2, sec™lv represents an anglein [D,;r]— {g}

sec (—\E) = An angle in [0,x]- {g} whose secant is (—\E)

= I -

sec (—Jﬁ) = B—K

We know that, for any x = &, cot ™ty represents an angle in [I:I,;rj

cor! ‘—‘u‘fﬁ) = &n angle in [0, s) whose contangent is {—\5)

cot™ {-43) = 57
We know that, for any x € &, seclsy represents an angle in [D, JT:l— {%}
sec? (2)= &n angleis [0,7]- {g} whose secant is 2
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We know that, for any x = &, cosec iy is an angle in [_E—K,DJ L [D,g}
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cosec! = = An angle is i,lil L D,E whose cosecant is | —
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Inverse Trigonometric Functions Ex 4.1 Q2.

r 1 3\
Let cos"| - |-- x. Then, cosx =
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Let sin | — |= ». Then, sin y =— =sin| —_J
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cotan”! |:2(:us[25in" l]:| =tan' {Euus[zxiﬂ
2 6
= tan"[lcnsi}:tan"[Exl}
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=tan 'l=—

Concept Insight:
Solve the innermost bracket first, so first find the prineipal value of sin-'(1/2)

Let tan™ (1) =x. Then, tanx=1=tan :

~tan” (1)= 2

Let cos™ [— ]Jz v. Then, cosy=- ] = —ms[ﬁjz c:}s[wc— T[]: CGS[EE].
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Let sin"[— 1]::. Then, sinz =- : =—sin[n}=sin[— EJ
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tan-t (ﬁ) = anglein (g,g] whose tangent is 3

= E
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sec! (-2) = &n angle in [D_,JT]— {E} whose secantis [-2]
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cosec” | —= | = An angle in |—, = |- {0} whose cosecant is | —
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an ! 3 - sec (_.ﬁ) +osec {%J =0





