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Tangents and Normals Ex 16.2 Q1
The given equation of the curve is

14";+\|"; =3 -—=[i)

Differentiating with respect to x, we get

Thus,

= XY=

Tangents and Normals Ex 16.2 Q2
The equation of the curveis

vo=2x%_x%43 -==[i)

o,
The equation of narmal is (i) is

-1
}”—}”1-E(X‘X1)

-1
-4)]=—|x-1
= y-4=x-)
= X+dy =10+1

= ¥+ 4y =17
Tangents and Normals Ex 16.2 Q3(i)



(i) The equation of the curve is y =x* — 6x® + 132 — 10x + 5.

On differentiating with respect to x, we get:

5{”-=4x3—18x3 +26x—10
dr

ﬁ] =10

dx (0. 5}

Thus, the slope of the tangent at (0, 3) is —10. The equation of the tangentis given as:

y—5=—10(x - 0)

-1 |
The slope of th al at (0, 5)1 T
e slope of the normal at (0, 3)is Slope of the tangent at (0, 5) 10

Therefore, the equation of the normal at (0, 3) is given as:

i
—5=—{(x-0
y m{x )

=10y-50=x
= x—10y+50=0

Tangents and Normals Ex 16.2 Q3(ii)



(ii) The equation of the curve is y=x*— 6x° + 1322 — 10x + 5.

On differentiating with respect to x, we get:

@=4x-‘—13x2+2ﬁx—1u
dx

wﬁ-?-:| =4-18+26-10=2
. 3)

Thus, the slope of the tangent at (1, 3) is 2. The equation of the tangent is given as:

y—3=2{x—l}
= y-3=2x-2
= y=2x+l
-1 -1

The sl fthe normal at {1, 3)1i =—,
© siope ottheno at(l. 3)is Slope of the tangent at (1,3) 2

Therefore, the equation of the normal at (1, 3) is given as:

|
3 e =1
v 2{x )

= 2y—6=-x+1
= x+2y-7=10

Tangents and Normals Ex 16.2 Q3(iii)



The equation of the curve is y = x%.

Jn differentiating with respect to x, we get:

f‘-vn =2x

dx

2] L
abe j0, )

Thus, the slope of the tangent at (0, 0) is 0 and the equation of the tangent is given as:

y=—0=00x-0)

:}}.-:l:l

~1 1
=——_ which is not defined.

Slope of the tangent at (0,0) 0

The slope of the normal at (0, 0) is

Therefore, the equation of the normal at (xg yg)= (0, 0)is given by

r=x, =0

Tangents and Normals Ex 16.2 Q3(iv)



We know that the equation of tangent and the normal to any
curve is given by
¥y o= mx - ) (&) Tangent

o= — B M I
Vo= by m(x X1) (B) arm a

Where m is the slope

We have,
yo=2x?-3x-1 P =01-2)
ay
=1 = —=45 -3
ope Fn _ >y
o= (G‘l—}"'] = 1
e dp

equation of tangent from [ 4]
(¥ +2)=1[x -1]

= -y =3

4nd equation of normal from (B
(¥ +2)=-1[x-1)
= X+y+1=10

Tangents and Normals Ex 16.2 Q3(v)



We know that the equation of tangent and the normal to any
curve is given by
Y-y = mx - ) (&) Tangent

y_h:E(X_Xl) (B) Marm al

VWhere m is the slope

We have,

Differentiating with respect to x, we get
dy 3xz(4—xj+x3

dx T (4-x)

dy 3xz(4—xj+x3

2y

- cx 2y [4—xj2
Slope m = [G’_b”] _3x4(4-2)+8
)y —zx2(4-2)°
3z
Tk
From (&)
Equation of tangent is
[y +2)=-2(x-2)
= 2x+y =2
From (B

Equation of Mormal is
1
v +2)=5(x-2)
= -2y =6
Tangents and Normals Ex 16.2 Q3(vi)



We know that the equation of tangent and the normal to any
curve is given by
¥y o= mx - ) (&) Tangent

}"—}”1=E|IX—X1:I (B) Norm al

Where m is the slope

We have,
vo=xZtdr +1 and  F=[x=3)

SIDpe=d—y=2x+4
iy

m=[d—yJ =10
o g

From [A)
Equation of tangent is
[y -22)=10(x - 3)

= 10x -y =8
From (B)
Equation of normal is

v -22)= 500~ 3

= K410y =223
Tangents and Normals Ex 16.2 Q3(vii)



We know that the equation of tangent and the normal to any
curve is given by

Y= ¥y = mixo- ) (&) Tangent
-1
= - B M I
Y-V [ =y (B) orm a

Where m is the slope

We have,
z z
X—2+y— =1 and £ = [aCDSE,bSinEj
a h?

Differentiating with respect to », we get
2x 2y g

& plax
2
L @
ax ¥a
o) -3 005 0%
Slope m = {_}”J =——
I la hsinga
-h
= —rcotg
3
Fram |:f-‘-.j
Equation of tangent is,
. -hb
-bsing)= —rcot@(x -acosg
(v )= Zcota )
= Excut9+y =hsind+bcotfxcoss
=
. z
- in::u:ut.9+ﬁ=5m 5'.+|::|:|55'
= b sin g
e
= —|::|:|t-9+£= L
3 bH  sing
= £C055'+£Sir'|-9=1
= b
Fram (B
Equation of normal is
. g sing
-hbsing = — X —3c0sg
[,V ) .bn::u:.se( )
z
= Extan-ﬂ—y -2 sing-bsing
b b
z z
= gxtan-ﬂ—y _3 -6 sing
z z
= a3 -h
= — X SBCE - ¥ CcOsecd =
b 4 b
= ax secd - by cosecd = 5° - b*

Tangents and Normals Ex 16.2 Q3(viii)



We know that the equation of tangent and the normal to any
curve is given by

Y-y = mlx - xy) (&) Tangent
-1
y—yl—E(x—xlj (B) Marm al

VWhere m is the slope

We have,
z z
b
_2_}=_2=1 P = [asecs btand)
& sl

Differentiating with respect to x, we get

2x 2y dy
2 khidx
o 2
_, gy _xb”
(oS yaz
z
Slope m = [G‘_y] _ azec&bz
dx J.  btanga
b
C asing
From (&)
Equation of tangent is,
-htang) = ¥ —3secd
(F j aSinE"l: j
)
= —_L— =bS_ECS—btanS
3 sIng sing
= b.x - = bS_E':S [l—zinzﬁ')
Foing cing
b .
= ——£5|n-9= Ccosg
a b
= i5|3|:5'—£t.24r'|5'=1
e ]
From [B)
Equation of narm al is
-3sing
y—btan8=$[,¥—559c5‘j
= ax sing + by = b tand + 5° tan g
= axcos8+bycotd = g + b7

Tangents and Normals Ex 16.2 Q3(ix)



We know that the equation of tangent and the narmal to any
curve is given by
¥ -k = me - xg) [&) Tangent

-1
o= T B Marm al
¥ - ¥ m( 1) (B)
Where v is the slope
We have,

Ll
e

Differentiating with respect to x, we get

'y
2y — =43
ya‘x
. 9 _22
dx W
Slope m = gy =m
e
From [4)
Equation of tangent is
23 gy 3
Tt =
= mzx—my=25—a
= rcx -y = 3
From [B]
Equation of normal is
23 -1 =
¥o—=|=—=|*——=
el el s
z
-+ 3
= Yy - 23] = —————
(my - 22) = T
= Frex + mSy =2am® + 3
= m2x+m3y—25m2—a=lj

Tangents and Normals Ex 16.2 Q3(x)



We know that the equation of tangent and the normal to any
curve is given by
Y-y o= mix - xy) [ &) Tangent

y—y1=E(x—x1j (B) Marm al

Where m is the slope

We have,

z2f,.2 2 2,2 i c
[adall A =X P = ) —
{ Y } Y [CDSE 5|r'|-5']

Differentiating with respect to x, we get

c?|2x +2yd—y = Exyz + Exzy d_y
rig iy

= g—ilzycz—zxzy} Exyz— c?
xly®- )

YT
C [ C‘2 _'32]
g‘_yJ =ﬁ sin® @

g S -2 c?
sing cos< g

c? tan g [1 - sin® 5':]

Slope m = [

) c? tan® g {n::uzls2 8- 1)

1 cos< g
o —
-tand sinfd

-cost g
sin*a

From (&)
Equation of tangent is

c -cost g oy
¥ - = = = M=
sIng SN~ & cosg

= xcos 8 +yvsin®@ =csing +ccost @

= xeoste+ysine =c



From [E-j

Equation af normal is

o sin® & oy
¥ = = M=
sing cosc g cos &
- :
. csin®g cost &
= lenae—y cost @ = - -
cosg sin &

- 5 c{5in45'—|:|:|545')
= XS g -y cocosT 2 =

CcoOs& xsin g
_ r:(sin2 8- cos® -5') {5in25'+ CDSZE)

1.
—sin 28
2

- w = 2 mt28
sin 28

xsinf@-yoos 8+2ccot28=10
Tangents and Normals Ex 16.2 Q3(xi)

We know that the equation of tangent and the normal to any
curve is given by

Y-y o= mix- ) (&) Tangent
-1
ST i o B M I
¥o— ¥y = [* =) (B) arm a
Where m is the slope

We have,

XNy = o L= [ct, E]

dy
+x — =0
# iy
2 AT
= dx  x
-C
e + -1
Slopem=|—| = —=—
P [G'XJP gt g2
From [&)
Equation of tangent is
c -1
-~ |= =[x-ct
{&* J = (=)
= x+t2y =fc+ot
= x+t2y = 2ot
From ([B)

Equation of normal is
- z
- —|=t[x-ct
[v-¢]-#pe-en

= xtS—i}’=ct3xt—c

= XtS—i}z=ct4—c



Tangents and Normals Ex 16.2 Q3(xii)
We know that the equation of tangent and the normal to any
curve is given by

Y-y =mlx - ) (&) Tangent

o= — B M I
[ m(x x1q) (B] arma

Where m is the slope

E|_||><
ra] R
+
U’|\‘C
(&1
[]

=
|

™
[]

53
=

e

Differentiating with resect to », we get

Zx By gy
JEE— —_— = |:|
3° " he ax
2
- W _ xb
ol yaz
z
Slope m = [d—yJ = —Xibz
g 18
Fram [&]
Equation of tangentis
z
le
(¥ -y1)=- (% - 1)
Ch
= xxh? +vyya = w07 v 050

Divide by 3%6% both side

2 2
B X
— A2 4 WU 4 O

3¢ b* PRt
=1 [+ (1, yy) lies on (i)]

aHy ¥

— - 4L =

PERE

From [B]
Equation of narmal is
_ }”15'2

W-rﬂ—xﬁzw-Xﬂ

X}"15'2 - }"Xr"—f"z = f”~’1,'r"1~="'2 - }"1)(1-"—7'2

Dividing by »y¥y both side

£_£2=52_b2
XM

Tangents and Normals Ex 16.2 Q3(xiii)



e P SR :
Differentiating — — b = | with respect to x, we have:

a
2x 2ydy
...... e ha' = [}
a b odx
2y dy  2x
b de a
dy b x
dv  a')
i} i . oy bx,
Therefore, the slope of the tangent at(x,, ¥, )is T =g
def, . ay
Then, the equation of the tangent at If.\',_:_‘ ¥, )is given by,
hx
V=3, = e X~ X, )
Caty, '
=% n‘:_lf].':_ wa v =hxx, - bx
= .l"s".x'.»-::: i V¥, — h:.ff +a’yi =0
Tangents and Normals Ex 16.2 Q3(xiv)
2z
Differentiating =2 +v3 =2 with respect to », we get
-1 -1
2 = 2 —=d
—wd gy 3 oo
3 3 H
1
dy AE]
= o |X
o [x]
. d
Therefore, the slope of the tangentat(1,1) is b =-1
A A1)
So, the equation of the tangent at(1,1) is
y-1l=-1{x-1)
= v+u-2=0
L -1
4lso, the slope of thenormal at [1,1)is givenby =1

slope of tangent at 1, 1)
.. the equationof the normal at[1,1) is
y-1l=1(x-1)

= Y- w=10

Tangents and Normals Ex 16.2 Q3(xv)



YWe know that the equation of tangent and the normal to any
curve is given by
Y-y o= mx - ) (&) Tangent

y—y1=E|:x—x1j (B) Morm al

Where m is the slope

We have,
X% = 4y P=(21)
2x = _40'}#
e
dy
= dx 2

From [&)
Equation of tangent is
y-1=1[(x-2)

= ¥-p=1

Fram (B
Equation of normal is
-1 =-1{x-2)

= X+ =73

Tangents and Normals Ex 16.2 Q3(vi)

The equation of the given curve is v =4x.

Differentiating with respect tox, we have:

2p—=4
© v
dyp 4 2
oot R
e 2y
-.'J_r'.'] 2 I
Ly 2
! )
Now, the slope atpoint (1, 2)is _rh__=|=l
dr | 4

~Equation of the tangent at (1, Dis y—2=-1(x - 1)
=sy—2r=—x+1

mx+yp—3Imi

Equation of the normal is |

y—2=—{-1)(x-1)

o

y—2=x-1

x—y+1=0

Tangents and Normals Ex 16.2 Q3(xix)



XZ yZ )
Let = - == = 1 be the equation of the curve,
a

bZ
Rewriting the above equation as, 5 dy b*
y2 | YT #
BT — dy  b* x
b2 ; dx &y

=vi=_x?-b
o7
Differentiating the above function w.r.t. x, we get,

:}[dvl _bF a2
B 5)

dx #Z b a

b

Slope of the tangent m =2—
a

Equation of the tangent is
(v —yi)=mix - x)

b
:}»{y—b]=‘“§?(x—@a)

= afy-b)= @(x—@a)
= Zhx —ay +ab-2ab =0
i@x—ay—ab=0
Slope of the normal is —ﬁ >
a
Equation of the normal is
(v—yi)=mlx -]

-a
=({y-b)= E(x—u@a)
iﬁ@b{y—bh—a(x‘—@a)

= ax + +f2by — 2T - 237 =0
:>ax+1'§by—\u'§(az+b2)=0

Tangents and Normals Ex 16.2 Q4



The given equations are_

x=F+szind : ¥ =1+cosd
%-=1+c&56 . %=—51'n§
d
dx_dg  —siné
dt E 1+ cosé
de
Slope.
1
(& __F
& 'I‘-’—_1+ L
Rl
=_1+L

-.'F
Thus, equation of tangent iz
¥y—¥ =m(x—x]}

Tangents and Normals Ex 16.2 Q5(i)
YWe know that the equation of tangent and norm al to any

curve at the point [, ) is

Y-y = mix - xy) ---[&4) Tangent
-1
¥ o- ¥y =E|IX'X1) ---[B} Marmal

Where m is slope.

¥ =8+s5n8, y=1+cosg, g==

- [l&+ 3]

(v e

ma

and E=1+CDSSJE=—SiHS
dy
dy T -1
5' = — = — = —=—1
opem [G"X]P dv | +1
(o]

Equation of tangent from [ &)

ooz

= X+y=g+1+1
= Zix+yl=a+4
From [B)

Equation of normal is

o-eoffz)

= 2w -y)=a
Tangents and Normals Ex 16.2 Q5(ii)



We know that the equation of tangent and normal to any

curve at the point (xy, ] is

¥ ¥ =m[x—x1:|
-1
Yy me S (ximg)
Where mr is slope,

=Ll i 23t* w1
LopipZ Ly 2 2
= 23 =
P =|x= 1=_;_}”= =
2,1 5 41
[ i,

a 42+ (14 1?] - 2302 (21)
dt [1+ tz)z

4t
[1+ t2)2

ay 637 [1+¢7) - [2a¢%)(2¢)

z
2L [1+17)
_ Bat® - 2at?
-
[1+¢2)
oy 2 4
dy g 63t 2at
dx  ax 4at
dt
32 s
Slope m = {d—yJ asie) 1 el
ax s 22 16
From (A)

Equation of tangent iz

! _a“‘,_ 13;’1_ Qe
|.:" EJ.I _l_ll\- TJ.I
16y —liﬂ =13x —:_
3 ]
13x—16y —2a=0
Equation of normal is,
(@)= _16(,_2a)
Il R T
ﬂ o
L O

161 +13y —9a=0
Tangents and Normals Ex 16.2 Q5(iii)

-—-[4) Tangent

———[E-j Morm al



YWe know that the equation of tangent and narmal to any
curve at the point [, y,) is

Y-y o= mx - xy) -—-{&) Tangent

¥ =¥y =E(X_X1:I ———(Bj Marm al

YWhere m is slope.

x = ate, v = 25t r=1
P =a23)
and
di=2&t, d_y=2&
adt t
ay
_ Jy _ ar 23
SIDpem—[EL _E_E_l
at
From (&)

Equation of tangent is
[y -2a)=1[x - 3]
= ¥-y+a=10

From [B)
Equation of normaol is

(¥ —238)=-1{x - 3]
= X+ =33

Tangents and Normals Ex 16.2 Q5(iv)



We know that the equation of tangent and normal to any
curve at the point (g, ) is

¥ o=y = mxo- ) -—-(&) Tangent
-1
_ = - -—B] M |
¥ =¥y IIX le ( :| arma

YWhere m is slope.

]
~+

X = asect, v = btant, t

(v 's
— = gsectx tant

at
and
d—y=bsec2t
at
p
Slape = ay _ _ bsec’t
dx  asect=tant
b
= —cosect
E}
From [&)
Equatin of tangent
(¥ - btant) = EDJSECT(X - gsect)
E]
= by mosect - gy = b cosect xsect - abtant
Ela] [1—5ir'|2 t]
 sint xcost
_ abcost
sint
= by sect - gy tant = ab
Fram (B
Equation of normal is
(v - btant) = _agmt(x - gsect)
= ax sint+by = a2 tant +b? tant
= ax cost + by cott = 3° + 6%

Tangents and Normals Ex 16.2 Q5(v)



We know that the equation of tangent and narmal to any
curve at the paint [xq,¥q) is

¥y = mix - xy) ---[&4) Tangent

VRN VR -—[By M I

¥ =¥y m(x x4 (B) Morma
Where m is slope.

x =a(8+sing),y = a[1-cos8)

(r s

E=a(1+c055jjj—£=55in5

2sing rcosg
=

SIDpem=d—y= sng___ 2 =
dv  1+cosd orcnosl g
2
_tang
-
M 0w,
From (&)

Equation of tangent

y—a(l-cosg)= ta;-ﬁ'{x - 3(8 +5ing))
xtang . tang
-y =38 g - 3(1-cos8
= 5 ¥ =a[8+sing) 3(1- coss)
From (B)

Equation of normal is
- cotd

y-a(l-cos8)= (¥ - 2({9+sing))

tan &

= (v - 23] +x-a38=10

Tangents and Normals Ex 16.2 Q5(vi)

¥ = 30056- 005 6 v = 3sin6-sin° 8

j—; = -3sine+ 3cosasing and d—; = ScosA-3sinfecos 0
:;}dﬁ,f_ dy/de  3cose-3sinfecose cos8(1-sin6) _ o0s%e  tante
dx  dx/de -3sine+ 3oosiesing _gine(1_ cosze) C —sinfe

S0 equation of the tangent at gis
v~ 3sing+ sine= ~tan®6(x - 3cos6 + cos” 8)

= 4{ycos®6 - xsin?6) = 3sin4e

S0 equation of normal at 8is
1

—3sine+sine=
Y tan®e

% — 30058+ cos” e
( )

= yoos 8-xcos 8= 3sin"e-sin"6-3coste+ coste
= vsin"8-xoos¥ e = 3sin*e-sin®6-3oos*e+ cost e



Tangents and Normals Ex 16.2 Q6
The given equation of curve is

x2+2y2—4x—6y+8=lj

Differentiating with respect to », we get

2x+4y§—i—4—6d—y=lj

ax
= d_y[4y—6:|=4—2x
dx
dy 2-x

dx 2y -3

From (i) atx =2

4+2y*-8-6Ay+8=0

= 2y2—6y+4=lil
= y2—3y+2=lil

= (y-2)[w-11=0
= y=21

Thus,

Slape my = {j—iJ =0
(22)

i = [d_y] =0
= el [21)

Thus, the eguation of normal is

(}”‘}”ﬂ:_Fl(X_EJ
= X =2

Tangents and Normals Ex 16.2 Q7

-—-fi) atx =2



The equation of the given curve is ap? = x°.

On differentiating with respect to x_ we have:

oy

2ay & =3y
T dx
dv _3x°

dx_g_v

The slope of a tangent to the curve at (xg, o) is _}?:| .
ol )

=> The slope of the tangent to the given curve at (am?, am’)is

aj,:| N i(ﬂmzf 3 3a’m’ ~3m
ot )

E - Za(am"’] C2a'm’ Eﬁ

= Slope of normal at (am?, am®)

-1 -2
- slope of the tangent at [amx, am‘“] 3m

Hence, the equation of the normal at (am?®, am®)is given by,

y—am’ :d“—z[x-n.fm'ﬂ:3 )
Im
= 3my—3am’ = -2x + 2am’
= 2x+ 3my-—am:(2+3m:):i}

Tangents and Normals Ex 16.2 Q8



The given equations are
vi=axith -—={i

Wo=dy -5 -==[ii]

Differentiating (i) with respect tox, we get
dy

2y —L = 3ax’

de £

G‘_y=3.:'.w2

ax 2y

m1=[d—y] =E=Ea
g a

m, = slope of (i) = 4

dcoording to the question
iy =iy, > 23=4 = a==

Fram (|j
vi=2x2%+b
= O=16+8
= b=-7
Thus,
a=2,h=-7

Tangents and Normals Ex 16.2 Q9



The given equaticins are,

y=x2+4x—16

I -y+1=0
Slope ry of (i)
ay

m1=a=2.}{+4

Slope my of (i)

."T'.'2=3

A5 per question

My = Hg
= 2x+4 =3
-1
= o= —
2
Fram (i)
1 7l
= -2-16=-_°
¥ 3 4

= O = =E_E
4 2
G5
= I -y = —
Y 4
= 12x -4y -G65 =10

Tangents and Normals Ex 16.2 Q10



The given equation is
W= x4 2x+6 === {i)
X+1dy +4=10 -—=[ii)

Slope ry of i)

)
m1=—y=3xz+2

(el

Slope my, of (i)

Slope of normal to (i) is
-1 -1

T
According to the question

-1 -1
IxZ 42 14
= 3x42 = 14
= X% =4
= x =12
From [i)
¥y =8+4+6 ar -8-4+06
=18 or -6

50, P =[2,18) and @ =[-2,-6)
Thus, the equation of narmal is

(y—18j=;—i[x—2j = ¥ +14y +86 =0
or [y+6:|=§|[x+2:| = ¥ +14y - 254 =10

Tangents and Normals Ex 16.2 Q11



The given equations are,
¥ o= 4x¥ - 3x +5 - i}
Q +x+3=10 -—=[ii)

Slope ry of (i)

Slope rmy of (i)

Hip = —

According to the question

= 4x%-1=73

= x% =1

= X =%1

From (i)
w=4-3+5 or -4+3+5
=6 or 4

P=(1,6) or @=(-,14

Thus, the equation of tangent is
(¥ -B)=9(x-1) = Q% -y -3 =0
(¥ —4)=9(x+1) = % -y +13 =10

Tangents and Normals Ex 16.2 Q12
The given equations are,
¥y o=xlog, x
2x -2y +3 =0

Slope rmy of i)

m1=§—i=lugex+l

slope rry of (i)
Mg =1

Tangents and Normals Ex 16.2 Q13



The equation of the given curve is v =x" —2x+7 .

On differentiating with respect to x, we get:

L T
dx

{a) The equation of thelineis 2x —y+9=10.
2x—y+9=0=y=2x+9

This is of the form y =mx + .

~Slope of the line = 2

If atangent is parallel tothe line 2x — y + 9 =10, then the slope of the tangent is equal to the slope
of theline.

Therefore, we have:

2=2x—-2
=2x=4
= x=2

MNow.x=2



=y=4-4+7=7
Thus, the equation of the tangent passing through (2, 7) is given by,

y-u?=2{x-~2}
= y—2x-3=0

Hence, the equation of the tangent line to the given curve (which is parallel toline 2x—y +9=
Nisy—2x—-3=0_

{(b) The equation of the line is 3y — 153x = 13.

Sv—13x=13= _}==3x+l§

This is of the form y=mx + ¢
~Slope of the line =3
If atangent is perpendicular to the line 5y — 15x = 13, then the slope of the tangent

-1 -
* slope of the line 3

= 2x—-2=



5
= Ax=—
3
5
i
6
Now,x= E
6
25 10 25-60+252 217
::“Pm_—_'i'?: =
36 6 36 i6
, , 5 217, .
Thus, the equation of the tangent passing through s 36 is given by,

_Ea_l[x_i]
Y36 T3 s
::.35'}"'_2]?#_[ 5}

— Y —
36 18

=36y -217=-2(6x-5)
=36y-217=-12x+10
=36y +12x-227=0

Hence, the equation of the tangent line to the given curve (which is perpendicular to line >y —
15x= 13) is 3&}4—'2!'—22? 2{}

Tangents and Normals Ex 16.2 Q14

The equation of the given curve is y = R

x=3
The slope of the tangent to the given curve at any point (x, ¥) is given by,

d__ -
d {.r—3]

Ifthe slope of the tangent is 2, then we have:

~1 =7
(x=3)

= 2{x~3) =~

This is not possible since the L.H.S. is positive while the R.H.S. is negative.

Hence, there is no tangent to the given curve having slope 2.
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The slope of the tangent to the given curve at anv point (x, ¥) is given by,

dr _ —(2x-2)  -2(x-1)

dr (¥ -2x43) (¥ -2x43)

ry
ra

If the slope of the tangent is 0, then we have:

—2{x-1)

2 =0
{.Iz—lt-i-:}}
=-2(x-1)=0
= x=]

_ i |
Whenx=1, y= ==,
1-2+3 2

1
~The equation of the tangent thmugh[l, E] is given by,

y-—=0{x-1)
= =~~E+—f.}
g 2
S
'

Hence, the equation of the required line is v = %4
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The equation of the given curve is y = 4/3x -2,

The slope of the tangent to the given curve at anv point (x, ¥) is given by,

dy 3

d 23x—2

The equation of the given line is 4x— 2y +3=10.

dx—2y+5=0= y= 2.\:+% (which is of the form y = mx +¢)

~Slope of the line =2

Now_thetangent to the given curve is parallel tothe line 4x — 2y — 5 = 0 if the slope of the

tangent is equal to the slope of theline.

Whenx="1, = 3[ﬂ]_2: ﬂ_E:J4]_32=\/E:E.
48 48 16 16 16 4

~.Equation of the tangent passing through the point [%, %] is given by,

= 24y-18=48x-4]
= 48x-24y =23

Hence, the equation of the required tangent is48x—24y =123
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The given equations are,
x4 3y -3 =0
¥ o=4x -5

Slope rry of (i)

iy = ——=-—
(el 3

Slope my of i)

i, = 4

Adccording to the question

."T.'1=|"'|'"|‘2
2
=g
3
== XN =-f
From (i)
36+3w-323=0
= 3y = 33
y=-11

So, P =(-6,-11)

Thus, the equation of tangentis
(¥ +11) = 4[x +8]

= dx - ¥ +13=10
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The equations are

§+§=2 —— i}
P=(ab)

We need to prove [ii] is the tangent to [i)

Differentiating (i) with respect to x, we get
R n-1
by 1 u 1 4
- = L —x——=10
n{a] xam[b] 2
3" B dv
n-1 n
e
an W E!

r-1 "
serem=(), =)
e b E}

Thus, the equation of tangent is

v -8)=-2(x-3)

= bx +ay =ab+ab
= bx +ay = 2ab
¥
—+=2
E ¥ b
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We have,
X = s5in3t, ¥ = COsZ2E, ¢ =%
1
P = = - =|:|
[-% o)
M,
aw (ol .
e 2 Ccos3t, e -2 s5nz2t
av .
SIDpem=d_y=£=ﬂ
a¥  3cos3t
at
B -2
B 1
-3x—=
2
_ +EJ§
E

Thus, equation of tangentis

-3

y-f)=—=|¥-%=

o2
2f2x -3y = 2





