RD Sharma
Solutions
Class 12 Maths
Chapter 29
Ex 29.2

The Plane 29.2 Q1

Given, intercepts on the coordinate axes are 2, -3 and 4

We know that,

The equation of a plane whose intercepts on the ∞ ordinate axes are a, b and c respectively, is given by

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 --- (i)

Here, a = 2, b = -3, c = 4

So,

Equation of required plane is

$$\frac{x}{2} + \frac{y}{-3} + \frac{z}{4} = 1$$
$$\frac{6x - 4y + 3z}{12} = 1$$

$$6x - 4y + 3z = 12$$

The Plane 29.2 Q2(i)

Reduce the equation 4x + 3y - 6z - 12 = 0 in intercept form:

$$4x + 3y - 6z - 12 = 0$$

 $4x + 3y - 6z = 12$

Divide by 12,

$$\frac{4x}{12} + \frac{3y}{12} - \frac{6z}{12} = \frac{12}{12}$$

$$\frac{x}{3} + \frac{y}{4} - \frac{z}{2} = 1$$

$$\frac{x}{3} + \frac{y}{4} + \frac{z}{(-2)} = 1$$

$$---\left(i\right)$$

This is of the form,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Comparing equation (i) and (ii),

$$a = 3, b = 4, c = -2$$

Intercepts on the coordinate axes are 3, 4, -2

The Plane 29.2 Q2(ii)

Reduce 2x + 3y - z = 6 in the intercept form:

$$2x + 3y - z = 6$$

Divide by 6,

$$\frac{2x}{6} + \frac{3y}{6} - \frac{z}{6} = \frac{6}{6}$$

$$\frac{x}{3} + \frac{y}{2} - \frac{z}{6} = 1$$

$$\frac{x}{3} + \frac{y}{2} + \frac{z}{(-6)} = 1$$

$$---(i)$$

We know intercept form of plane with $a,\,b,\,c$ as intercepts on coordinate axes is,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Comparing equation (i) and (ii),

$$a = 3, b = 2, c = -6$$

So, intercepts on coordinate axes by the given plane are 3,2,-6

The Plane 29.2 Q2(iii)

We have to find intercepts on coordinate axes by plane 2x - y + z = 5

$$2x - y + z = 5$$

Divide by 5,

$$\frac{2x}{5} - \frac{y}{5} + \frac{z}{5} = \frac{5}{5}$$

$$\frac{x}{\left(\frac{5}{2}\right)} + \frac{y}{\left(-5\right)} + \frac{z}{5} = 1$$
---(i)

We know that if a,b,c are intercepts on coordinate axes by the plane, then equation of such plane is given by,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \qquad \qquad --- \text{(ii)}$$

Comparing the equation (i) and (ii),

$$a = \frac{5}{2}$$
, $b = -5$, $c = 5$

So, intercepts on coordinate axes by the plane are $\frac{5}{2}$, -5,5.

The Plane 29.2 Q3

Here, it is given that the plane meets axes in A,B and C

Let,
$$A = (a,0,0)$$
, $B = (0,b,0)$, $C = (0,0,c)$

We have centroid of $\square ABC$ is (α, β, γ) we know that, centroid of $\square ABC$ is given by

$$\begin{split} & \text{Centroid} = \frac{x_1 + x_2 + x_3}{3} \,, \, \frac{y_1 + y_2 + y_3}{3} \,, \, \frac{z_1 + z_2 + z_3}{3} \\ & \left(\alpha, \beta, \gamma\right) = \left(\frac{a + 0 + 0}{3} \,, \, \frac{0 + b + 0}{3} \,, \, \frac{0 + 0 + c}{3}\right) \\ & \left(\alpha, \beta, \gamma\right) = \left(\frac{a}{3} \,, \, \frac{b}{3} \,, \, \frac{c}{3}\right) \end{split}$$

$$\frac{\partial}{\partial t} = \alpha \implies \partial t = 3\alpha \qquad ---(i)$$

$$\frac{c}{3} = \gamma \implies c = 3\gamma \qquad --- (iii)$$

We know that, if a,b,c are intercepts by plane on coordinate axes, then equation of the plane is given by

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Put a,b,c from equation (i),(ii) and (iii),

$$\frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$$

Multiplying by 3 on both the sides,

$$\frac{3x}{3\alpha} + \frac{3y}{3\beta} + \frac{3z}{3\gamma} = 3$$

$$\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{y} = 3$$

The Plane 29.2 Q4

Intercepts on the coordinate axes are equal.

We know that, if a,b,c are intercepts on coordinate axes by a plane, then equation of the plane is given by,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Here, it is givin that a = b = c = p (Say)

$$\frac{x}{p} + \frac{y}{p} + \frac{z}{p} = 1$$
$$\frac{x + y + z}{p} = 1$$

ρ

$$x + y + z = p \qquad \qquad --- (i)$$

It is given that plane is passing through the point (2,4,6), so, using equation (i)

$$x + y + z = p$$
$$2 + 4 + 6 = p$$

12 = p

Put, value of p in equation (i)

So, the required equation of the plane is given by,

$$x + y + z = 12$$

x + y + z = 12

The Plane 29.2 Q5

Here, it is given that plane meets the coordinate axes at A,B and C with centroid of 0ABC is (1,-2,3)

The equation of plane with intercepts a,b and c on the coordinate axes is given by,

- - - (i)

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 - -- (i)

We know that, centroid of a triangle is given by

Centroid =
$$\frac{x_1 + x_2 + x_3}{3}$$
, $\frac{y_1 + y_2 + y_3}{3}$, $\frac{z_1 + z_2 + z_3}{3}$
 $(1,-2,3) = \left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$

$$(1,-2,3) = \left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$$

Comparing LHS and RHS,

$$\frac{a}{3} = 1 \implies a = 3 \qquad ---(i)$$

$$\frac{b}{3} = -2 \implies b = -6 \qquad ---(ii)$$

$$\frac{c}{3} = 3 \implies c = 9 \qquad ---(iii)$$

Put, a,b,c is equation (i), we get the equation of required plane

$$\frac{x}{3} + \frac{y}{-6} + \frac{z}{9} = 1$$
$$\frac{6x - 3x + 2z}{18} = 1$$

6x - 3x + 2z = 18