RD Sharma
Solutions
Class 12 Maths
Chapter 33
Ex 33.1

Binomial Distribution Ex 33.1 Q1

Let p denote the probability of having defective item, so

$$p = 6\% = \frac{6}{100} = \frac{3}{50}$$

$$p = 6\% = \frac{6}{100} = \frac{3}{50}$$
So, $q = 1 - p$

$$=\frac{47}{50}$$
Let X denote the number of defective items in a sample of 8 items. Then, the probability

[Since p+q=1]

of getting r defective bulks is $P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$

 $=1-\frac{3}{50}$

$$P(X = r) = {}^{8}C_{r} \left(\frac{3}{50}\right)^{r} \left(\frac{47}{50}\right)^{8-r} ---(1)$$

$$= P(X = 0) + P(X = 1)$$

$$= P(X = 0) + P(X = 1)$$

$$= (3)^{0} (47)^{8-0} = (3)^{1} (47)^{8-1}$$

$$= {}^{8}C_{0} \left(\frac{3}{50}\right)^{0} \left(\frac{47}{50}\right)^{8-0} + {}^{8}C_{1} \left(\frac{3}{50}\right)^{1} \left(\frac{47}{50}\right)^{8-1}$$

$$= {}^{8}C_{0} \left(\frac{3}{50}\right)^{8} \left(\frac{47}{50}\right)^{8} + {}^{8}C_{1} \left(\frac{3}{50}\right)^{7} \left(\frac{47}{50}\right)^{8}$$
 [Using equation (1)]

$$= 1.1. \left(\frac{47}{50}\right)^8 + 8. \frac{3}{50} \cdot \left(\frac{47}{50}\right)^7$$

$$(47)^7 (47 \quad 24)$$

$$= \left(\frac{47}{50}\right)^7 \left(\frac{47}{50} + \frac{24}{50}\right)$$
$$= \left(\frac{71}{50}\right) \left(\frac{47}{50}\right)^7$$

$$= \left(\frac{71}{50}\right) \left(\frac{47}{50}\right)^7$$

$$(1.42) \times (0.94)^7$$

 $= (1.42) \times (0.94)^7$

Probability of getting head on one throw of coin = $\frac{1}{2}$

$$Q = 1 - \frac{1}{2}$$
$$Q = \frac{1}{2}$$

So, $p = \frac{1}{2}$

[Since
$$p+q=1$$
]

The coin is tossed 5 times. Let X denote the number of getting head as 5 tosses of coins. So probability of getting r heads in n tosses of coin is given by

So probability of getting
$$r$$
 neads in n tosses of coin is given by
$$P(X = r) = {^nC_r}p^rq^{n-r}$$

$$P\left(X=r\right) = {}^{5}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{5-r}$$

Probability of getting at least 3 heads

$$= P(X = 3) + P(X = 4) + P(X = 4)$$

= P(X = 3) + P(X = 4) + P(X = 5)

 $=\frac{5.4}{2}.\left(\frac{1}{2}\right)^5+5\left(\frac{1}{2}\right)^5+1.\left(\frac{1}{2}\right)^5$

 $=\left(\frac{1}{2}\right)^{5}[10+5+1]$

The required probability is $=\frac{1}{2}$

Binomial Distribution Ex 33.1 Q3

 $= 16.\frac{1}{32}$

 $=\frac{1}{2}$

$$+P\left(X=5\right)$$

 $= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{2} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right) + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5}.1$

$$= P(X = 3) + P(X = 4) + P(X = 5)$$

$$= {}^{5}C_{3}(\frac{1}{2})^{3} \cdot (\frac{1}{2})^{5-3} + {}^{5}C_{4}(\frac{1}{2})^{4}(\frac{1}{2})^{5-4} + {}^{5}C_{5}(\frac{1}{2})^{5}(\frac{1}{2})^{0}$$

$$\left(\frac{1}{2}\right)^0$$

$$\left(\frac{1}{2}\right)^0$$

---(1)

$$(\frac{1}{2})^0$$

Let p be the probability getting tail on a toss of a fair coin, so

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
 [Since $p + q = 1$]

Let ${\mathcal X}$ denote the number tail obtained on the toss of coin 5 times. So probability of getting r tails in n tosses of coin is given by

[Using (1)]

$$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$

$$= {^5C_r}\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{5-r}$$

$$= --- (1)$$

Probability of getting tail an odd number of times

$$= P(X = 1) + P(X = 3) + P(X = 5)$$

$$= {}^{5}C_{3}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{5-1} + {}^{5}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{5-3} + {}^{5}C_{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{0}$$

$$= 5.\left(\frac{1}{2}\right)^{5} + \frac{5.4}{2}.\left(\frac{1}{2}\right)^{5} + 1.\left(\frac{1}{2}\right)^{5}$$

$$= \left(\frac{1}{2}\right)^{5} \left[5 + 10 + 1\right]$$

$$= 16\left(\frac{1}{2}\right)^{5}$$

$$= 16.\frac{1}{32}$$

The required probability is $=\frac{1}{2}$

 $=\frac{1}{2}$

Let p be the probability of getting a sum of 9 and it considered as success.

So,
$$p = \frac{4}{36}$$

$$p = \frac{4}{36}$$

$$p = \frac{1}{9}$$

$$p = \frac{1}{9}$$

$$q = 1 - \frac{1}{9}$$

$$q = \frac{8}{9}$$

Let
$$X$$
 denote the number of success in throw of a pair of dice 6 times. So probability of getting r success out of n is given by

getting
$$r$$
 success out of n is given by
$$P(X = r) = {^nC_r}p^rq^{n-r}$$

$$P\left(X=r\right)={}^{n}C_{r}p^{r}q^{n-r}$$

=
$$P(X = 5) + P(X = 6)$$

$$= P(X = 5) + P(X = 6)$$

$$= 60 (1)^{5} (8)^{6-5} \cdot 60$$

$$= P(X = 5) + P(X = 6)$$

$$= {}^{6}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{8}{2}\right)^{6-5} + {}^{6}C_{6}$$

 $= \left(\frac{1}{9}\right)^5 \left[\frac{48}{9} + \frac{1}{9}\right]$

 $=\frac{49}{9}\times\left(\frac{1}{9}\right)^5$

Required probability = $\frac{49}{6}$

Binomial Distribution Ex 33.1 Q5

 $=\frac{49}{96}$

So,

$$= P(X = 5) + P(X = 6)$$

$$= {}^{6}C_{5} \left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6}$$

$$= {}^{6}C_{5} \left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6} \left(\frac{8}{9}\right)^{6-6}$$

$$= {}^{6}C_{5} \left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6} \left(\frac{8}{9}\right)^{6}$$

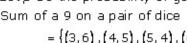
$$= {}^{6}C_{5} \left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6} \left(\frac{1}{9}\right)^{6$$

$$\int_{0}^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6} \left(\frac{8}{9}\right)^{6}$$

$$C_6 \left(\frac{1}{9}\right)^6 \left(\frac{8}{9}\right)^{6-6}$$

[Since p+q=1]

[Using (1)]



Let p be the probability of getting head in a throw of coin. So,

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
[Since $p + q = 1$]

Let X denote the number of heads on tossing the ∞ in 6 times. Probability of getting r in tossing the ∞ in n times is given by

[Using (1)]

$$P\left(X=r\right) = {^{n}C_{r}}p^{r}q^{n-r} \qquad \qquad ---\left(1\right)$$

Probability of getting at least three heads

$$= P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$= P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$= 1 - [P(Y = 0) + P(Y = 1) + P(Y = 2)]$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= (1)^{0} (1)^{6-0} (1)^{1} (1)^{6-1}$$

$$= 1 - \left[{}^{6}C_{0} \left(\frac{1}{2} \right)^{0} \left(\frac{1}{2} \right)^{6-0} + {}^{6}C_{1} \left(\frac{1}{2} \right)^{1} \left(\frac{1}{2} \right)^{6-1} \right]$$

$$= 1 - \left[{}^{6}C_{0} \left(\frac{1}{2} \right)^{0} \left(\frac{1}{2} \right)^{6-0} + {}^{6}C_{1} \left(\frac{1}{2} \right)^{1} \left(\frac{1}{2} \right)^{6-1} + {}^{6}C_{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{6-2} \right]$$

$$= 1 - \left[\begin{array}{ccc} C_0(\frac{1}{2}) & (\frac{1}{2}) & + & C_1(\frac{1}{2}) & (\frac{1}{2}) \\ & & & & & & \\ \end{array} \right]$$

$$= 1 - \left[1.\left(\frac{1}{2}\right)^6 + 6\left(\frac{1}{2}\right)^6 + \frac{6.5}{2}.\left(\frac{1}{2}\right)^6\right]$$

$$=1-\left[\left(\frac{1}{2}\right)^{6}(1+6+15)\right]$$

$$= 1 - \left[\left(\frac{1}{2} \right) \left(1 + 6 + 15 \right) \right]$$
$$= 1 - \left[\frac{22}{64} \right]$$

$$= \frac{42}{64} \\
= \frac{21}{32}$$

Required probability =
$$\frac{21}{32}$$

Let p denote the 4 turning up in a toss of a fair die, so

$$p = \frac{1}{6}$$

$$q = 1 - \frac{1}{6}$$

$$q = \frac{5}{6}$$
[Since $p + q = 1$]

Let X denote the variable showing the number of turning 4 up in 2 tosses of die. Probability of getting 4, r times in n tosses of a die is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{2}C_{r}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2-r}$$
---(1)

Probability of getting 4 at least once in tow tosses of a fair die

$$= P(X = 1) + P(X = 2)$$

$$= P\left(X=1\right) + P\left(X=2\right)$$

$$= P(X = 1) + P(X = 2)$$

= 1 - P(X = 0)

$$= 1 - P(X = 0)$$

$$= 1 - P(X = 0)$$

$$= 1 \left[\frac{2}{2} \left(\frac{1}{5} \right)^{0} \left(\frac{5}{5} \right)^{2-0} \right]$$

$$= 1 - \left[{}^{2}C_{0} \left(\frac{1}{5} \right)^{0} \left(\frac{5}{5} \right)^{2-0} \right]$$

$$= 1 - P(x = 0)$$

$$= 1 - \left[{}^{2}C_{-} \left(\frac{1}{2} \right)^{0} \left(\frac{5}{2} \right)^{2-0} \right]$$

$$= 1 - \left[{}^{2}C_{0} \left(\frac{1}{6} \right)^{0} \left(\frac{5}{6} \right)^{2-0} \right]$$

$$= 1 - \begin{bmatrix} {}^{2}C_{0} \left(\frac{1}{6} \right) \left(\frac{5}{6} \right) \end{bmatrix}$$

$$=1-\left[1.1.\left(\frac{5}{6}\right)^2\right]$$

$$=1-\left[1.1.\left(\frac{5}{6}\right)^2\right]$$

$$= 1 - \left[\frac{25}{36} \right]$$

$$= \frac{36 - 25}{36}$$

$$= \frac{11}{36}$$

So,
$$Required probability = \frac{11}{36}$$

[Using (1)]

---(1)

Let p denote the probability of getting head in a toss of fair coin. So

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
 [Since $p + q = 1$]

Let ${\it X}$ denote the variable representing number of heads on 5 tosses of a fair coin.

Probability of getting r an n tosses of a fair coin, so

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$P(X = r) = {}^{5}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{5-r}$$
---(1)

Probability of getting head on an even number of tosses of coin

$$= P(X = 0) + P(X = 2) + P(X = 4)$$

$$= {}^{5}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5-0} + {}^{5}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{5-2} + {}^{5}C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{5-4}$$

$$= 1.1.\left(\frac{1}{2}\right)^{5} + \frac{5.4}{2}.\left(\frac{1}{2}\right)^{5} + 5.\left(\frac{1}{2}\right)^{5}$$

$$= \left(\frac{1}{2}\right)^{5}\left[1 + 10 + 5\right]$$

$$= 16 \times \frac{1}{32}$$

Required probability =
$$\frac{1}{2}$$

 $=\frac{1}{2}$

Let p be the probability of hitting the target, so

$$p = \frac{1}{4}$$

$$q = 1 - p$$

$$= 1 - \frac{1}{4}$$

$$q = \frac{3}{4}$$
[Since $p + q = 1$]

Let X denote the variable representing the number of times hitting the target out of 7 fires. Probability of hitting the target r times out of n fires is given by, $P\left(X=r\right) = {^{n}C_{\nu}p^{r}q^{n-r}}$

$$= {}^{7}C_{r} \left(\frac{1}{4}\right)^{r} \left(\frac{3}{4}\right)^{7-r} --- (1)$$

Probability of hitting the target at least twice

$$= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$=1-[P(X=0)+P(X=1)]$$

$$= 1 - \left[{}^{7}C_{0} \left(\frac{1}{4} \right)^{0} \left(\frac{3}{4} \right)^{7-0} + {}^{7}C_{1} \left(\frac{1}{4} \right)^{1} \left(\frac{3}{4} \right)^{7-1} \right]$$

$$= 1 - \left[1.1 \cdot \left(\frac{3}{4} \right)^{7} + 7 \cdot \frac{1}{4} \cdot \left(\frac{3}{4} \right)^{6} \right]$$

$$= 1 - \left(\frac{3}{4}\right)^6 \left(\frac{3}{4} + \frac{7}{4}\right)$$

$$=1-\left(\frac{3}{4}\right)^{6}\left(\frac{10}{4}\right)$$

$$=1-\left(\frac{3}{4}\right)^{6}\left(\frac{10}{4}\right)$$

$$=1-\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)$$

 $=1-\frac{7290}{16384}$

Binomial Distribution Ex 33.1 Q9

[Using (1)]

Let the probability of one telephone number out of 15 is busy between 2 PM and 3 PM be 'p', then P = 1/15; probability that number is not busy, q = 1-p

Q = 14/16. Binomial distribution is
$$\left(\frac{14}{15} + \frac{1}{15}\right)^6$$

Since 6 numbers are called we find the probability for none of the numbers are busy is P(0)

One number is busy P(1); Two numbers are busy is P(2) Three numbers are busy is P(3); Four numbers are busy is P(4); Five numbers are busy is P(5); Six numbers are busy is P(6).

$$P(0) = {}^{6}C_{0} \left(\frac{14}{15}\right)^{6}$$

$$P(1) = {}^{6}C_{1} \left(\frac{14}{15}\right)^{5} \left(\frac{1}{15}\right)^{1}$$

$$P(2) = {}^{6}C_{2} \left(\frac{14}{15}\right)^{4} \left(\frac{1}{15}\right)^{2}$$

$$P(3) = {}^{6}C_{3} \left(\frac{14}{15}\right)^{3} \left(\frac{1}{15}\right)^{3}$$

$$\left(\frac{14}{15}\right)^{2}\left(\frac{1}{15}\right)^{2}$$

$$P(4) = {}^{6}C_{4} \left(\frac{14}{15}\right)^{2} \left(\frac{1}{15}\right)^{4}$$

$$P(5) = {}^{6}C_{5} \left(\frac{14}{15}\right)^{1} \left(\frac{1}{15}\right)^{5}$$

$$P(6) = {}^{6}C_{6} \left(\frac{14}{15}\right)^{0} \left(\frac{1}{15}\right)^{6}$$

Probability that at least 3 of the numbers will be busy

$$P(3) + P(4) + P(5) + P(6) = 0.05$$

$$p$$
 denote the probability of success p = Probability of getting 5 or 6 in a throw of die.

Probability of getting 5 or 6 in a throw of die
$$= \frac{2}{6}$$

$$p = \frac{1}{3}$$

$$q = 1 - \frac{1}{3}$$
 [Since $p + q = 1$]
$$q = \frac{2}{3}$$

Let X denote the number of success in six throws of a dic. Probability of getting r success in six throws of an unbiased dic is given by

In six throws of an unbiased dic is given by
$$P(X = r) = {^nC_r}p^rq^{n-r}$$

$$= {^6C_r}\left(\frac{1}{3}\right)^r\left(\frac{2}{3}\right)^{6-r}$$

$$P\left(X\geq4\right)$$

 $= 15.\frac{1}{81}.\frac{4}{9}+6.\frac{1}{243}.\frac{2}{3}+\frac{1}{729}$

$$= P(X = 4) + P(X = 5) + P(X = 6)$$

$$= {}^{6}C_{4} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{6-4} + {}^{6}C_{5} \left(\frac{1}{3}\right)^{5} \left(\frac{2}{3}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{3}\right)^{6} \left(\frac{2}{3}\right)^{6-6}$$

$$= \frac{6.5}{2} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{2} + 6 \left(\frac{1}{3}\right)^{5} \left(\frac{2}{3}\right) + 1. \left(\frac{1}{3}\right)^{6} .1$$

$$= \frac{60}{729} + \frac{12}{729} + \frac{1}{729}$$
$$= \frac{73}{729}$$

Required probability =
$$\frac{73}{729}$$

Binomial Distribution Ex 33.1 Q11

---(1)

Let p denote the probability of getting head on a throw of fair coin, so

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
[Since $p + q = 1$]

Let X denote the variable representing the number of getting heads on throw of 8 coins. Probability of getting r heads in a throw of n coins is given by

[Using (1)]

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{8}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{8-r}$$
---(1)

Probability of getting at least six heads

$$= P(X = 6) + P(X = 7) + P(X = 8)$$

$$= {}^{8}C_{6} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{8-6} + {}^{8}C_{7} \left(\frac{1}{2}\right)^{7} \left(\frac{1}{2}\right)^{8-7} + {}^{8}C_{8} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{8-8}$$

$$= \frac{8 \cdot 7}{2} \left(\frac{1}{2}\right)^{8} + 8 \left(\frac{1}{2}\right)^{8} + 1 \cdot \left(\frac{1}{2}\right)^{8} \cdot 1$$

$$= \left(\frac{1}{2}\right)^{8} \left[28 + 8 + 1\right]$$

$$= \frac{1}{256} (37)$$

Required probability =
$$\frac{37}{256}$$

 $=\frac{37}{256}$

Let p denote the probability of getting one spade out of a deck of 52 cards, so

$$p = \frac{13}{52}$$

$$p = \frac{1}{4}$$

$$q = 1 - \frac{1}{4}$$

$$q = \frac{3}{4}$$
[Since $p + q = 1$]

Let X denote the radom variable of number of spades out of 5 cards. Probability of getting r spades out of n cards is given by

$$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$

$$= {^{5}C_{r}} \left(\frac{1}{4}\right)^{r} \left(\frac{3}{4}\right)^{5-r}$$

$$= --- (1)$$

(i)

Probability of getting all five spades

=
$$P(X = 5)$$

= ${}^{5}C_{5}(\frac{1}{4})^{5}(\frac{3}{4})^{5-5}$
= $\frac{1}{1024}$

Probability of getting 5 spades = $\frac{1}{1024}$

(ii)

Probability of getting only 3 spades

$$= P(X = 3)$$

$$= {}^{5}C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{5-3}$$

$$= \frac{5.4}{2}\left(\frac{1}{64}\right)\left(\frac{9}{16}\right)$$

$$= \frac{45}{512}$$

Probability of getting 3 spades = $\frac{45}{512}$

(iii)

Probability that none is spade

$$= P (X = 0)$$

$$= {}^{5}C_{0} \left(\frac{1}{4}\right)^{0} \left(\frac{3}{4}\right)^{5-0}$$

$$= \frac{243}{1024}$$

Probability of getting non spade = $\frac{243}{1024}$

Let p be the probability of getting 1 white ball out of 7 red, 5 white and 8 black balls. So

$$p = \frac{5}{20}$$

$$p = \frac{1}{4}$$

$$q = 1 - \frac{1}{4}$$

$$q = \frac{3}{4}$$
[Since $p + q = 1$]

Let X denote the random variable of number of selecting white ball with replacement out of 4 balls. Probability of getting r white balls out of n balls is given by

[Using (1)]

$$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$

$$= {^{4}C_{r}}\left(\frac{1}{4}\right)^{r}\left(\frac{3}{4}\right)^{4-r}$$

$$= ---(1)$$

(i)

Probability of getting none white ball

$$= P\left(X = 0\right)$$

$$= {}^{4}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{4-0}$$

$$= \left(\frac{3}{4}\right)^{4}$$

$$= \frac{81}{256}$$

Probability of getting none white ball = $\frac{81}{256}$

(ii)

Probability of getting all white balls

$$= P\left(X = 4\right)$$

$$= {}^{4}C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{4-0}$$

$$= \left(\frac{1}{4}\right)^{4}$$

$$= \frac{1}{256}$$

Probability of getting all white balls = $\frac{1}{256}$

(iii)

Probability of getting any two are white

$$= P (X = 2)$$

$$= {}^{4}C_{2} \left(\frac{1}{4}\right)^{2} \left(\frac{3}{4}\right)^{4-2}$$

$$= \frac{4 \cdot 3}{2} \cdot \frac{1}{16} \cdot \frac{9}{16}$$

$$= \frac{27}{128}$$

Probability of getting any two are white balls = $\frac{27}{128}$

Binomial Distribution Ex 33.1 014

Let p denote the probability of getting a ticket bearing number divisible by 10, So

$$p = \frac{10}{100}$$
 [Since there are 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 which are divisible by 10]
$$p = \frac{1}{10}$$

$$q = 1 - \frac{1}{10}$$
 [Since $p + q = 1$]
$$q = \frac{9}{10}$$

Let X denote the variable representing the number of tickets bearing a number divisible by 10 out of 5 tickets. Probability of getting r tickets bearing a number divisible by 10 out of r tickets is given by

$$P(X = r) = {^{n}C_{r}}p^{r}q^{n-r}$$

$$= {^{5}C_{r}} \left(\frac{1}{10}\right)^{r} \left(\frac{9}{10}\right)^{5-r}$$
---(1)

Probability of getting all the tickets bearing a number divisible by 10

$$= {}^{5}C_{5} \left(\frac{1}{10}\right)^{5} \left(\frac{9}{10}\right)^{5-5}$$

$$= 1 \cdot \left(\frac{1}{10}\right)^{5} \left(\frac{9}{10}\right)^{0}$$

$$= \left(\frac{1}{10}\right)^{5}$$

Required probability =
$$\left(\frac{1}{10}\right)^5$$

Let p denote the probability of getting a ball marked with 0. So

$$p = \frac{1}{10}$$
 [Since balls are marked with 0,1,2,3,4,5,6,7,8,9] $q = 1 - \frac{1}{10}$ [Since $p + q = 1$] $q = \frac{9}{10}$

Let X denote the variable presenting the number of balls marked with 0 out of four balls drawn. Probability of drawing r balls out of n balls that are marked 0 is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{4}C_{r}\left(\frac{1}{10}\right)^{r}\left(\frac{9}{10}\right)^{4-r}$$
---(1)

Probability of getting none balls marked with 0

$$= P (X = 0)$$

$$= {}^{4}C_{0} \left(\frac{1}{10}\right)^{0} \left(\frac{9}{10}\right)^{4-0}$$

$$= 1.1. \left(\frac{9}{10}\right)^{4}$$

$$= \left(\frac{9}{10}\right)^{4}$$

Probability of getting none balls marked with
$$0 = \left(\frac{9}{10}\right)^4$$

Let p denote the probability of getting one defective item out of hundred. So

Let
$$p$$
 denote the probability of getting one defective item out of hundred. So
$$p = 5\% \qquad \qquad \text{[Since 5\% are defective items]}$$

$$= \frac{5}{100}$$

$$p = \frac{1}{20}$$

$$q = 1 - \frac{1}{20}$$

$$q = \frac{19}{20}$$

Let X denote the random variable representing the number of defective items out of 10 items. Probability of getting r defective items out of n items selected is given by,

---(1)

$$= {}^{10}C_r \left(\frac{1}{20}\right)^r \left(\frac{19}{20}\right)^{10-r}$$

Probability of getting not more than one defective items

$$= P(X = 0) + P(X = 1)$$

$$= {}^{10}C_0 \left(\frac{1}{20}\right)^0 \left(\frac{19}{20}\right)^{10-0} + {}^{10}C_1 \left(\frac{1}{20}\right)^1 \left(\frac{19}{20}\right)^{10-1}$$

$$= {}^{10}C_0 \left(\frac{1}{20}\right) \left(\frac{19}{20}\right) + {}^{10}C_1 \left(\frac{1}{20}\right) \left(\frac{19}{20}\right)$$
$$= 1.1. \left(\frac{19}{20}\right)^{10} + 10. \frac{1}{20} \left(\frac{19}{20}\right)^9$$

The required probability =
$$\frac{29}{20} \left(\frac{19}{20} \right)^9$$

 $=\left(\frac{19}{20}\right)^9 \left[\frac{19}{20} + \frac{10}{20}\right]$

 $=\frac{29}{20}\left(\frac{19}{20}\right)^9$

 $P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$

Let p denote the probability that one bulb produced will fuse after 150 days, so

$$p = 0.05$$

$$= \frac{5}{100}$$
[It is given]
$$p = \frac{1}{20}$$

$$q = 1 - \frac{1}{20}$$
[Since $p + q = 1$]
$$q = \frac{19}{20}$$

Let ${\mathcal X}$ denote the number of fuse bulb out of 5 bulbs. Probability that r bulbs out of n will fuse in 150 days is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{5}C_{r}\left(\frac{1}{20}\right)^{r}\left(\frac{19}{20}\right)^{5-r}$$
---(1)

(i)
Probability that none is fuse =
$$P(X = 0)$$

$$= {}^{5}C_{0} \left(\frac{1}{20}\right)^{0} \left(\frac{19}{20}\right)^{5-0}$$

 $= \left(\frac{19}{20}\right)^5$

Probability that none will fuse
$$= \left(\frac{19}{20}\right)^5$$

(ii)

Probability that not more than 1 will fuse
$$= P\left(X = 0\right) + P\left(X = 1\right)$$

$$= \left(\frac{19}{20}\right)^5 + {}^5C_1\left(\frac{1}{20}\right)^1\left(\frac{19}{20}\right)^{5-1}$$

$$= \left(\frac{19}{20}\right)^4 \left[\frac{19}{20} + \frac{5}{20}\right]$$

$$= \left(\frac{24}{20}\right) \left(\frac{19}{20}\right)^4$$

Probability not more than one will fuse
$$=\left(\frac{6}{5}\right)\left(\frac{19}{20}\right)^4$$

Probability that more than one will fuse

$$= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - \left[\frac{6}{5}\left(\frac{19}{20}\right)^{4}\right]$$

Probability that more than one will fuse = $1 - \left[\frac{6}{5} \left(\frac{19}{20} \right)^4 \right]$

(iv)

Probability that that at least one will fuse

$$= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

$$= 1 - P(X = 0)$$

$$= 1 - \left[{}^{5}C_{0} \left(\frac{1}{20} \right)^{0} \left(\frac{19}{20} \right)^{5-0} \right]$$

$$= 1 - \left[\left(\frac{19}{20} \right)^{5} \right]$$

Probability that that at least one will fuse = $1 - \left(\frac{19}{20}\right)^5$

Binomial Distribution Ex 33.1 Q18

A person can be either right-handed or left-handed.

It is given that 90% of the people are right-handed.

$$\therefore p = P(\text{right-handed}) = \frac{9}{10}$$

$$q = P(\text{left-handed}) = 1 - \frac{9}{10} = \frac{1}{10}$$

Using binomial distribution, the probability that more than 6 people are right-handed is given by,

$$\sum_{r=7}^{10} {}^{10}C_r p^r q^{n-r} = \sum_{r=7}^{10} {}^{10}C_r \left(\frac{9}{10}\right)^r \left(\frac{1}{10}\right)^{10-r}$$

Therefore, the probability that at most 6 people are right-handed

= 1 - P (more than 6 are right-handed)

$$=1-\sum_{r=7}^{10} {}^{10}C_r (0.9)^r (0.1)^{10-r}$$

Let p denote the probability of getting 1 red ball out of 7 green, 4 white and 5 red balls, so

$$p = \frac{5}{16}$$

$$q = 1 - \frac{5}{16}$$

$$q = \frac{11}{16}$$
[Since $p + q = 1$]

Let X denote the number of red balls drawn out of four balls. Probability of getting r red balls out of n drawn balls is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{4}C_{r}\left(\frac{5}{16}\right)^{r}\left(\frac{11}{16}\right)^{4-r}$$
---(1)

Probability of getting one red ball

$$= P(X = 1)$$

$$= {}^{4}C_{1} \left(\frac{5}{16}\right)^{1} \left(\frac{11}{16}\right)^{4-1}$$

$$= 4 \cdot \left(\frac{5}{16}\right) \left(\frac{11}{16}\right)^{3}$$

$$= \left(\frac{5}{4}\right) \left(\frac{11}{16}\right)^{3}$$

Required probability = $\left(\frac{5}{4}\right)\left(\frac{11}{16}\right)^3$

Binomial Distribution Ex 33.1 Q20

X	P(X)
0	$\frac{7}{9} \times \frac{6}{8} = \frac{21}{36}$
1	$\frac{7}{9} \times \frac{2}{8} \times 2 = \frac{14}{36}$
2	$\frac{2}{9} \times \frac{1}{8} = \frac{1}{36}$

Binomial Distribution Ex 33.1 Q21

X	P (X)
0	${}^{3}C_{0}\left(\frac{3}{7}\right)^{0}\left(\frac{4}{7}\right)^{3-0} = \left(\frac{4}{7}\right)^{3} = \frac{64}{343}$
1	${}^{3}C_{1}\left(\frac{3}{7}\right)^{1}\left(\frac{4}{7}\right)^{3-1} = 3.\left(\frac{3}{7}\right)\left(\frac{4}{7}\right)^{2} = \frac{144}{343}$
2	${}^{3}C_{2}\left(\frac{3}{7}\right)^{2}\left(\frac{4}{7}\right)^{3-2} = 3\cdot\left(\frac{3}{7}\right)^{2}\left(\frac{4}{7}\right) = \frac{108}{343}$
3	${}^{3}C_{3}\left(\frac{3}{7}\right)^{3}\left(\frac{4}{7}\right)^{3-0} = \left(\frac{3}{7}\right)^{3} = \frac{27}{343}$

Let p be the probability of getting doublet is a throw of a pair of dice, so

$$p = \frac{6}{36}$$
 [Since (1,1),(2,2),(3,3),(4,4),(5,5),(6,6) are doublets]

$$p = \frac{1}{6}$$
 [Since $p + q = 1$]

$$= \frac{5}{6}$$

Let X denote the number of getting doublets out of 4 times. So probability distribution is given by

Binomial Distribution Ex 33.1 Q23

X	P(X)
0	${}^{3}C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{3-0} = \left(\frac{5}{6}\right)^{3} = \frac{125}{216}$
1	${}^{3}C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{3-1} = 3\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)^{2} = \frac{25}{72}$
2	${}^{3}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3-2} = 3\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right) = \frac{5}{72}$
3	${}^{3}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{3-3} = \left(\frac{1}{6}\right)^{3} = \frac{1}{216}$

Binomial Distribution Ex 33.1 Q24

We know that, probability of getting head in a toss of coin $p = \frac{1}{2}$

Probability of not getting head $q = 1 - \frac{1}{2}$

$$q = \frac{1}{2}$$

The coin is tossed 5 times. Let X denote the number of times head occur is 5 tosses.

$$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$
$$= {^5C_r}\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{5-r}$$

Probability distribution is given by

Let p be the probability of a getting a number greater than 4 in a toss of die, so

$$p = \frac{2}{6}$$
 [Since, numbers greater than 4 ∞ in a die = 5,6]
$$p = \frac{1}{3}$$

$$q = 1 - \frac{1}{3}$$
 [Since $p + q = 1$]
$$q = \frac{2}{3}$$

Let X denote the number of success in 2 throws of a die. Probability of getting r success in n thrown of a die is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{2}C_{r}\left(\frac{1}{3}\right)^{r}\left(\frac{2}{3}\right)^{2-r}$$
---(1)

Probability distribution of number of success is given by

X	P (X)
0	${}^{2}C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{2-0} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$
1	${}^{2}C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{2-1} = 2\cdot\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{4}{9}$
2	${}^{2}C_{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2-2} = \left(\frac{1}{3}\right)^{2} = \frac{1}{9}$

Binomial Distribution Ex 33.1 Q26

Let n denote the number of throws required to get a head and X denote the amount won/lost.

He may get head on first toss or lose first and 2nd toss or lose first and won second toss probability distribution for X

Number of throws (n):

1

2

Amount won/lost (X):

1

2

Probability P(X):

 $\frac{1}{2}$ $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

So probability distribution is given by

X	P (X)
0	$\frac{1}{4}$
1	$\frac{1}{2}$
-2	$\frac{1}{4}$

Let
$$p$$
 denote the probability of getting 3,4 or 5 in a throw of die. So p = probability of success = $\frac{3}{6}$

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
[Since $p + q = 1$]

Let X denote the number of success in throw of 5 dice simultaneously. Probability of getting r success out of n throws of die is given by $P\left(X=r\right) = {^nC_r}p^rq^{n-r}$

$$= {}^{5}C_{r} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{5-r} ---(1)$$

Probability getting at least 3 success

$$= P(X = 3) + P(X = 4) + P(X = 5)$$

$$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{5-3} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)^{5-4} + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{5-5}$$

$$= \frac{5.4}{2} \left(\frac{1}{2}\right)^{5} + 5. \left(\frac{1}{2}\right)^{5} + \left(\frac{1}{2}\right)^{5}$$

$$= \left(\frac{1}{2}\right)^{5} \left[10 + 5 + 1\right]$$

Required probability =
$$\frac{1}{2}$$

 $=\frac{16}{32}$

Let ho denote the probability of getting defective items out of 100 items, so

$$p = 10\%$$

$$= \frac{10}{100}$$

$$p = \frac{1}{10}$$

$$q = 1 - \frac{1}{10}$$

$$q = \frac{9}{10}$$
[Since $p + q = 1$]

Let ${\cal X}$ denote the number of defective items drawn out of 8 items. Probability of getting r defective items out of a sample of 8 items is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{8}C_{r}\left(\frac{1}{10}\right)^{r}\left(\frac{9}{10}\right)^{8-r}$$
---(1)

Probability of getting 2 defective items

$$= P(X = 2)$$

$$= {}^{8}C_{2} \left(\frac{1}{10}\right)^{2} \left(\frac{9}{10}\right)^{8-2}$$

$$= \frac{8 \times 7}{2} \left(\frac{1}{10}\right)^{2} \left(\frac{9}{10}\right)^{6}$$

$$= \frac{28 \times 9^{6}}{10^{8}}$$

Required probability =
$$\frac{28 \times 9^6}{10^8}$$

Let p denote the probability of drawing a heart from a deck of 52 cards, so

$$p = \frac{13}{52}$$
 [v There are 13 hearts in deck]
$$p = \frac{1}{4}$$

$$q = 1 - \frac{1}{4}$$
 [Since $p + q = 1$]
$$q = \frac{3}{4}$$

Let the card is drawn n times. So Binomial distribution is given by

$$P\left(X=r\right)={}^{n}C_{r}p^{r}q^{n-r}$$
 where X denote the number of spades drawn and $r=0,1,2,3,...n$

We have to find the smallest value of n for which P(X = 0) is less than $\frac{1}{4}$

$$P\left(X=0\right) < \frac{1}{4}$$

$${^{n}C_{0}\left(\frac{1}{1}\right)^{0}\left(\frac{3}{4}\right)^{n-0}} < \frac{1}{4}$$

$$\left(\frac{3}{4}\right)^{n} < \frac{1}{4}$$

Put
$$n = 1$$
, $\left(\frac{3}{4}\right) \not < \frac{1}{4}$

$$n = 2$$
, $\left(\frac{3}{4}\right)^2 \not < \frac{1}{4}$

 $n = 3, \left(\frac{3}{4}\right)^3 \not < \frac{1}{4}$

So, smallest value of
$$n = 3$$

.: We must draw cards at least 3 times.

Given, the probability of drawing a heart $> \frac{3}{4}$

$$1 - P\left(X = 0\right) > \frac{3}{4}$$

$$1 - {^nC_0} \left(\frac{1}{4}\right)^n \left(\frac{3}{4}\right)^{n-0} > \frac{3}{4}$$

$$1 - \left(\frac{3}{4}\right)^n > \frac{3}{4}$$

$$1 - \frac{3}{4} > \left(\frac{3}{4}\right)^n$$

$$\frac{1}{4} > \left(\frac{3}{4}\right)^n$$

For
$$n = 1$$
, $\left(\frac{3}{4}\right)^1 \not < \frac{1}{4}$

$$n = 2$$
, $\left(\frac{3}{4}\right)^2 \not < \frac{1}{4}$

$$n = 3$$
, $\left(\frac{3}{4}\right)^3 \not < \frac{1}{4}$

$$n = 4$$
, $\left(\frac{3}{4}\right)^4 \not < \frac{1}{4}$

$$n = 5$$
, $\left(\frac{3}{4}\right)^5 \not < \frac{1}{4}$

So, card must be drawn 5 times.

Binomial Distribution Ex 33.1 Q30

Here
$$x = 8, p = \frac{1}{2}, q = \frac{1}{2}$$

Let there be k desks and X be the number of students studying in office.

Then we want that

P (X ≤ k) > .90
⇒ P (X > k) < .10
⇒ P (X = k + 1, k + 2,...8) < .10
Clearly P (X > 6) = P (X = 7 or X = 8)
=
$${}^{8}C_{7}\left(\frac{1}{2}\right)^{8} + {}^{8}C_{8}\left(\frac{1}{2}\right)^{8}$$

= .04
and
$$P(X > 5) = P(X = 6, X = 7 \text{ or } X = 8)$$

= .15

$$P(X > 6) < 0.10$$

⇒ If there are 6 desks then there is at least 90% chance for every graduate assistant to get a desk.

Binomial Distribution formula is given by

$$P(x) = {}^{n}C_{x} p^{x} q^{n-x}$$
, where $x = 0, 1, 2, ...n$

Let x = No. of heads in a toss

We need probability of 6 or more heads

$$X = 6, 7, 8$$

Here $p = \frac{1}{2}$ and $q = \frac{1}{2}$

P(6) = Prob of getting 6 heads, 2 tails =
$${}^8C_6 \left(\frac{1}{2}\right)^6 \times \left(\frac{1}{2}\right)^2$$

P(7) = Prob of getting 7 heads, 1tails =
$${}^{8}C_{7} \left(\frac{1}{2}\right)^{7} \times \left(\frac{1}{2}\right)^{1}$$

P(8) = Prob of getting 8 heads, 0 tails =
$${}^8C_8 \left(\frac{1}{2}\right)^8 \times \left(\frac{1}{2}\right)^0$$

The probability of getting at least 6 heads (not more than 2 tails) is then

$${}^{8}C_{6} \left(\frac{1}{2}\right)^{6} \times \left(\frac{1}{2}\right)^{2} + {}^{8}C_{1} \left(\frac{1}{2}\right)^{7} \times \left(\frac{1}{2}\right)^{1} + {}^{8}C_{2} \left(\frac{1}{2}\right)^{8} \times \left(\frac{1}{2}\right)^{0}$$

$$= \frac{1}{256} + 8\frac{1}{256} + 28\frac{1}{256} = \frac{37}{256}$$

Let p represents the probability of getting head in a toss of fair coin, so

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$

$$q = \frac{1}{2}$$
[Since $p + q = 1$]

Let X denote the random variable representing the number heads in 6 tosses of coin. Probability of getting r sixes in n tosses of a fair coin is given by,

$$P\left(X=r\right) = {^{n}C_{r}}p^{r}q^{n-r}$$

$$= {^{6}C_{r}}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{6-r}$$

$$= --- (1)$$

(i)

Probability of getting 3 heads

$$= P(X = 3)$$

$$= {}^{6}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{6-3}$$

$$= \frac{6 \times 5 \times 4}{3 \times 2} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{3}$$

$$= \frac{20}{64}$$

Probability of getting 3 heads = $\frac{20}{64} = \frac{5}{16}$

(ii)

Probability of getting no heads

$$= P\left(X = 0\right)$$

$$= {}^{6}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{6-0}$$

$$= \left(\frac{1}{2}\right)^{6}$$

$$= \frac{1}{64}$$

Probability of getting no heads = $\frac{1}{64}$

Probability of getting at least one head

$$= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$= 1 - P(X = 0)$$

$$= 1 - \frac{1}{64}$$

Probability of getting at least one head = $\frac{63}{64}$

Binomial Distribution Ex 33.1 Q33

Let p be the probability that a tube function for more than 500 hours. So

$$p = 0.2$$

$$p = \frac{1}{5}$$

$$q = 1 - \frac{1}{5}$$

$$= \frac{4}{5}$$
[Since $p + q = 1$]

Let X denote the random variable representing the number of tube that functions for more than 500 hours out of 4 tubes. Probability of functioning r tubes out n tubes selected for more than 500 hours is given by,

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{4}C_{r}\left(\frac{1}{5}\right)^{r}\left(\frac{4}{5}\right)^{4-r}$$
---(1)

Probability that exactly 3 tube will function for more than 500 hours

$$= {}^{4}C_{3} \left(\frac{1}{5}\right)^{3} \left(\frac{4}{5}\right)^{4-3}$$
$$= 4 \cdot \left(\frac{1}{5}\right)^{3} \left(\frac{4}{5}\right)$$
$$= \frac{16}{625}$$

Required probability =
$$\frac{16}{625}$$

Let p be the probability that component survive the shock test. So

$$p = \frac{3}{4}$$

$$Q = 1 - \frac{3}{4}$$

$$Q = \frac{1}{4}$$
[Since $p + q = 1$]

Let X denote the random variable representing the number of components that survive shock test out of 5 components. Probability of that r components that survive shock test out of n components is given by

$$P(X = r) = {^{n}C_{r}p^{r}q^{n-r}}$$

$$= {^{5}C_{r}} \left(\frac{3}{4}\right)^{r} \left(\frac{1}{4}\right)^{5-r}$$
---(1)

(i)

Probability that exactly 2 will survive the shock test

$$= P(X = 2)$$

$$= {}^{5}C_{2} \left(\frac{3}{4}\right)^{2} \left(\frac{1}{4}\right)^{5-2}$$

$$= \frac{5.4}{2} \left(\frac{9}{16}\right) \left(\frac{1}{64}\right)$$

$$= \frac{45}{512} = 0.0879$$

Probability that exactly 2 survive = 0.0879

(ii)
Probability that at most 3 will survive = P(X = 0) + P(X = 1) + P(X = 3) + P(X = 4) = 1 - [P(X = 4) + P(X = 5)] $= 1 - [{}^{5}C_{4}(\frac{3}{4})^{4}(\frac{1}{4})^{5-4} + {}^{5}C_{5}(\frac{3}{4})^{5}(\frac{1}{4})^{5-5}]$ $= 1 - [5 \cdot \frac{81}{1024} + \frac{243}{1024}]$ $= 1 - [\frac{405 + 243}{1024}]$ $= \frac{1024 - 648}{1024}$ $= \frac{376}{1024} = 0.3672$

Probability that bomb strikes a target p = 0.2Probability that a bomb misses the target = 0.8 n = 6let x = number of bombs that strike the target P(x=2) = exactly 2 bombs strike the target

$$= {}^{6}C_{2} \left(\frac{2}{10}\right)^{2} \times \left(\frac{8}{10}\right)^{4} = 15 \times \frac{16384}{10^{6}} = 0.24576$$

$$P(x \ge 2)$$
 = at least 2 bombs strike the target

$$= 1 - [P(x=0) + P(x=1)]$$

= 1 - P(x < 2)

= 0.34464

$$= 1 - \left[{}^{6}C_{0} \left(\frac{2}{10} \right)^{0} \times \left(\frac{8}{10} \right)^{6} + {}^{6}C_{1} \left(\frac{2}{10} \right)^{1} \times \left(\frac{8}{10} \right)^{5} \right]$$

$$= 1 - [0.0.262144 + 0.393216] = 1 - 0.65536$$

= 0.34464

Let p be the probability that a mouse get contract the desease. So

$$p = 40\%$$

$$= \frac{40}{100}$$

$$= \frac{2}{5}$$

$$q = 1 - \frac{2}{5}$$

$$q = \frac{3}{5}$$
[Since $p + q = 1$]

Let ${\it X}$ denote the variable representing number of mice contract the disease out of 5 mice.

Probability the r mice get contract the disease out of n mice inoculated is given by

$$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{5}C_{r}\left(\frac{2}{5}\right)^{r}\left(\frac{3}{5}\right)^{5-r} --- (1)$$

(i)

Probability that none contract the disease = P(X = 0)

$$= {^5C_0} \left(\frac{2}{5}\right)^0 \left(\frac{3}{5}\right)^{5-0}$$
$$= \left(\frac{3}{5}\right)^5$$

Probability that none contract the disease = $\left(\frac{3}{5}\right)^5$

(ii)

Probability that more than 3 contract disease

$$= P (X = 4) + P (X = 5)$$

$$= {}^{5}C_{4} \left(\frac{2}{5}\right)^{4} \left(\frac{3}{5}\right)^{5-4} + {}^{5}C_{5} \left(\frac{2}{5}\right)^{5} \left(\frac{3}{5}\right)^{5-5}$$

$$= 5 \cdot \left(\frac{2}{5}\right)^{4} \left(\frac{3}{5}\right) + \left(\frac{2}{5}\right)^{5}$$

$$= \left(\frac{2}{5}\right)^{4} \left[3 + \frac{2}{5}\right]$$

$$= \frac{17}{5} \left(\frac{2}{5}\right)^{4}$$

Let p be the probability of success is experiments, q be the probability of failure,

Given,
$$P = 2q$$

but $p+q=1$
 $2q+q=1$
 $3q=1$
 $q=\frac{1}{3}$
 $p=\frac{2}{3}$

Let X denote the random variable representing the number of success out of 6 experiments. Probability of qetting r success out of n experiments is given by

---(1)

$$P(X=r) = {}^{n}C_{r}p^{r}q^{n-r}$$

$$= {}^{6}C_{r} \left(\frac{2}{3}\right)^{r} \left(\frac{1}{3}\right)^{6-r}$$

$$= P(X = 4) + P(X = 5) + P(X = 6)$$

$$= P(X = 4) + P(X = 5) + P(X = 6)$$

$$= P(X = 4) + P(X = 5) + P(X = 6)$$

$$= P(X = 4) + P(X = 5) + P(X = 6)$$

$$60 (2)^4 (1)^{6-4} 60 (2)^5 (1)^{6-4}$$

$$= {}^{6}C_{4} \left(\frac{2}{3}\right)^{4} \left(\frac{1}{3}\right)^{6-4} + {}^{6}C_{5} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right)^{6-5} + {}^{6}C_{6} \left(\frac{2}{3}\right)^{6} \left(\frac{1}{3}\right)^{6-6}$$

$$= \frac{6 \times 5}{2} \left(\frac{2}{3}\right)^4 \left(\frac{1}{3}\right)^2 + 6\left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^1 + \left(\frac{2}{3}\right)^6$$

$$=\left(\frac{2}{3}\right)^4\left[\frac{15}{9} + \frac{4}{3} + \frac{4}{9}\right]$$

$$= \left(\frac{2}{3}\right)^4 \left[\frac{15+12+4}{9}\right]$$

$$= \left(\frac{2}{3}\right) \left[\frac{13+12+4}{9}\right]$$
$$= \left(\frac{31}{9}\right) \left(\frac{2}{3}\right)^4$$

Required probability =
$$\frac{496}{1}$$

 $=\frac{496}{729}$

Required probability = $\frac{496}{720}$

Let x = number of out of service machinesp = probability that machine will be out of service on the same day = 2/100q = probability that machine will be in service on the

same day = 8/100

P(x=3) = probability exactly 3 machines will be out of service on the same day

$$P(x=3) = {}^{20}C_3 \times \left(\frac{2}{100}\right)^3 \left(\frac{8}{100}\right)^0 = 1140 \times 0.000008$$

= 0.00912
For low probability events Poisson' distribution is use

For low probability events Poisson' distribution is used instead of Binomial distribution. Then, $\lambda = np = 20x0.02 = 0.4$

$$P(x=r) = \frac{e^{-\lambda x \lambda^{8}}}{r!}$$

$$P(x=3) = \frac{e^{-0.4 \times 0.4^{8}}}{r!} = 0.6703 \times 0.064/6 = 0.0071$$

Let p be the probability that a student entering a university will graduate, so

$$p = 0.4$$

 $q = 1 - 0.4$ [Since $p + q = 1$]
 $= 0.6$

Let X denote the random variable representing the number of students entering a university will graduate out of 3 students of university. Probability that r students will graduate out of n entering the university is given by

$$P(X = r) = {^{n}C_{r}p^{r}(q)^{n-r}}$$

$$= {^{3}C_{r}(0.4)^{r}(0.6)^{3-r}}$$
---(1)

(i)

Probability that none will graduate

$$= P (X = 0)$$

$$= {}^{3}C_{0} (0.4)^{0} (0.6)^{3-0}$$

$$= (0.6)^{3}$$

$$= 0.216$$

Probability that none will graduate = 0.216

(ii)

Probability that one will graduate

$$= P(X = 1)$$

$$= {}^{3}C_{1}(0.4)^{1}(0.6)^{3-1}$$

$$= 3 \times (0.4)(0.36)$$

$$= 0.432$$

Probability that only one will graduate = 0.432

(iii)

Probability that all will graduate

$$= P(X = 3)$$

$$= {}^{3}C_{3}(0.4)^{3}(0.6)^{3-3}$$

$$= (0.4)^{3}$$

$$= 0.064$$

Probability that all will graduate = 0.064

Binomial Distribution Ex 33.1 Q40

Let X denote the number of defective eggs in the 10 eggs drawn. Since the drawing is done with replacement, the trials are Bernoulli trials.

Clearly, \times has the binomial distribution with n=10 and p= $\frac{10}{100}$ = $\frac{1}{10}$

Therefore,
$$q = 1 - \frac{1}{10} = \frac{9}{10}$$

Now,P(at leastone defective egg) = $P(X \ge 1) = 1 - P(X = 0)$

$$=1-^{10}C_0\left(\frac{9}{10}\right)^{10}=1-\frac{9^{10}}{10^{10}}$$

Let p be the probability of answering a true. So

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2}$$
 [Since $p + q = 1$]
$$= \frac{1}{2}$$

Thus the probability that he answers at least 12 questions correctly among 20 questions is $P(X \ge 12) = P(X = 12) + P(X = 13) + P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)$ $= \left(\frac{1}{2}\right)^{20} \left\{ {}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^$

$$= \left(\frac{1}{2}\right)^{20} \left\{ {}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{16} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20} \right.$$

$$= \frac{{}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{16} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20}}{2^{20}}$$

Therefore, the required answer is

$$\frac{{}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{16} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20}}{2^{20}}$$

Binomial Distribution Ex 33.1 Q42

imes is the random variable whose binomial distribution is $B\left(6,\frac{1}{2}\right)$.

Therefore,
$$n = 6$$
 and $p = \frac{1}{2}$

$$\therefore q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$$

Then,
$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$

$$= {}^{6}C_{x}\left(\frac{1}{2}\right)^{6-x} \cdot \left(\frac{1}{2}\right)^{x}$$

$$= {}^{6}C_{x}\left(\frac{1}{2}\right)^{6}$$

It can be seen that P(X = x) will be maximum, if ${}^6\mathrm{C}_{_x}$ will be maximum.

Then,
$${}^{6}C_{0} = {}^{6}C_{6} = \frac{6!}{0! \cdot 6!} = 1$$

$${}^{6}C_{1} = {}^{6}C_{5} = \frac{6!}{1! \cdot 5!} = 6$$

$${}^{6}C_{2} = {}^{6}C_{4} = \frac{6!}{2! \cdot 4!} = 15$$

$${}^{6}C_{3} = \frac{6!}{3! \cdot 3!} = 20$$

The value of $^6\mathrm{C}_{_3}$ is maximum. Therefore, for x = 3, P(X = x) is maximum.

Thus, X = 3 is the most likely outcome.

The repeated quessing of correct answers from multiple choice questions are Bernoulli trials. Let X represent the number of correct answers by quessing in the set of 5 multiple choice questions.

Probability of getting a correct answer is, $p = \frac{1}{2}$

$$\therefore q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}$$

Clearly, X has a binomial distribution with n = 5 and $p = \frac{1}{3}$

$$\therefore P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$
$$= {}^{5}C_{x}\left(\frac{2}{3}\right)^{5-x} \cdot \left(\frac{1}{3}\right)^{x}$$

P (quessing more than 4 correct answers) = $P(X \ge 4)$

$$= P(X=4) + P(X=5)$$

$$= {}^{5}C_{4}\left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right)^{4} + {}^{5}C_{5}\left(\frac{1}{3}\right)^{5}$$

$$= {}^{5}C_{4}\left(\frac{1}{3}\right) \cdot \left(\frac{1}{3}\right) + {}^{5}C_{5}\left(\frac{1}{3}\right)$$

$$= 5 \cdot \frac{2}{3} \cdot \frac{1}{81} + 1 \cdot \frac{1}{243}$$

$$= \frac{10}{243} + \frac{1}{243}$$

(b) P (winning exactly once) =
$$P(X = 1)$$

$$= {}^{50}C_1 \left(\frac{99}{100}\right)^{49} \cdot \left(\frac{1}{100}\right)^1$$
$$= 50 \left(\frac{1}{100}\right) \left(\frac{99}{100}\right)^{49}$$
$$= \frac{1}{2} \left(\frac{99}{100}\right)^{49}$$

(c) P (at least twice) =
$$P(X \ge 2)$$

$$=1-P(X<2)$$

$$=1-P(X<1)$$

$$=1-[P(X=0)+P(X=1)]$$

$$=[1-P(X=0)]-P(X=1)$$

$$=1-\left(\frac{99}{100}\right)^{50}-\frac{1}{2}\cdot\left(\frac{99}{100}\right)^{49}$$

$$=1-\left(\frac{99}{100}\right)^{49}\cdot\left[\frac{99}{100}+\frac{1}{2}\right]$$

$$=1-\left(\frac{99}{100}\right)^{49}\cdot\left(\frac{149}{100}\right)$$

Binomial Distribution Ex 33.1 Q45

Let the shooter fire n times. n fires are Bernoulli trials.

 $=1-\left(\frac{149}{100}\right)\left(\frac{99}{100}\right)^{49}$

In each trial, p= probability of hitting the target= $\frac{3}{4}$

And q = probability of not hitting the target= $1 - \frac{3}{4} = \frac{1}{4}$

Then,
$$P(X = X) = {}^{n}C_{X} q^{n-X} p^{X} = {}^{n}C_{X} \left(\frac{1}{4}\right)^{n-X} \left(\frac{3}{4}\right)^{X} = {}^{n}C_{X} \frac{3^{X}}{4^{n}}$$

Now, given that

P (hitting the target atleast once) > 0.99

i.e.
$$P(x \ge 1) > 0.99$$

 $\Rightarrow 1 - P(x = 0) > 0.99$
 $\Rightarrow 1 - C_0 \frac{1}{4^n} > 0.99$
 $\Rightarrow C_0 \frac{1}{4^n} < 0.01$
 $\Rightarrow \frac{1}{4^n} < 0.01$
 $\Rightarrow 4^n > \frac{1}{0.01} = 100$

The minimum value of n to satisfy this inequality is 4 Thus, the shooter must fire 4 times.

Let the man toss the coin n times. The n tosses are n Bernoulli trials.

Probability (p) of getting a head at the toss of a coin is $\frac{1}{2}$.

$$\Rightarrow p = \frac{1}{2} \Rightarrow q = \frac{1}{2}$$

$$\therefore \mathbf{P}(\mathbf{X} = x) = {^{n}\mathbf{C}_{x}} p^{n-x} q^{x} = {^{n}\mathbf{C}_{x}} \left(\frac{1}{2}\right)^{n-x} \left(\frac{1}{2}\right)^{x} = {^{n}\mathbf{C}_{x}} \left(\frac{1}{2}\right)^{n}$$

It is given that,

P (getting at least one head) > $\frac{90}{100}$

$$P(x \ge 1) > 0.9$$

$$1 - P(x = 0) > 0.9$$

$$1 - P(x = 0) > 0.9$$

$$1 - {^{n}C_{0}} \cdot \frac{1}{2^{n}} > 0.9$$

$$^{n}C_{0}.\frac{1}{2^{n}} < 0.1$$

$$\frac{1}{2^n} < 0.1$$

$$2^n > \frac{1}{0.1}$$

$$2^n > 10$$
 ...(1)

The minimum value of n that satisfies the given inequality is 4.

Thus, the man should toss the coin 4 or more than 4 times.

Let the man toss the coin n times.

Probability (p) of getting a head at the toss of a coin is $\frac{1}{2}$.

$$p = \frac{1}{2}$$

$$q = 1 - \frac{1}{2} \qquad [Since \ p + q = 1]$$

$$= \frac{1}{2}$$

$$\therefore P(X = x) = {}^{*}C_{x}p^{*-x}q^{x}$$

$$= {}^{*}C_{x}\left(\frac{1}{2}\right)^{*-x}\left(\frac{1}{2}\right)^{x}$$

$$= {}^{*}C_{x}\left(\frac{1}{2}\right)^{x}$$

It is given that

$$\begin{split} p \, (\text{getting at least one head}) &> \frac{80}{100} \\ P \, (x \geq 1) > 0.8 \\ 1 - P \, (x = 0) > 0.8 \\ 1 - {}^{*}C_{0} \cdot \frac{1}{2^{*}} > 0.8 \\ {}^{*}C_{0} \cdot \frac{1}{2^{*}} < 0.2 \\ \frac{1}{2^{*}} < 0.2 \\ 2^{*} > \frac{1}{0.2} \\ 2^{*} > 5 \end{split}$$

The minimum value of n that satisfies the given inequality is 3. Thus, the man should toss the coin 3 or more than 3 times.

Binomial Distribution Ex 33.1 Q48

Let p be the probability of getting a doublet in a throw of a pair of dice, so

$$p = \frac{6}{36}$$
 [Since (1,1),(2,2),(3,3),(4,4),(5,5),(6,6)]

$$= \frac{1}{6}$$

$$q = 1 - \frac{1}{6}$$
 [Since $p + q = 1$]

$$= \frac{5}{6}$$

Let X denote the number of getting doublets i.e. success out of 4 times. So, probability distribution is given by

Binomial Distribution Ex 33.1 Q49

Let p be the probability of defective bulbs, so

$$p = \frac{6}{30}$$

$$= \frac{1}{5}$$

$$q = 1 - \frac{1}{5}$$
 [Since $p + q = 1$]
$$= \frac{4}{5}$$

Here, 4 bulbs is drawn at random with replacement. So, probability distribution is given by

X	P(X)	
0	${}^{4}C_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{4-0}=\frac{256}{625}$	
1	${}^{4}C_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{4-1} = \frac{4}{5} \times \frac{4^{3}}{5^{3}} = \frac{256}{625}$	
2	${}^{4}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{4-2} = \frac{6}{5^{2}} \times \frac{4^{2}}{5^{2}} = \frac{96}{625}$	
3	${}^{4}C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{4-3} = \frac{4}{5^{3}} \times \frac{4}{5} = \frac{16}{625}$	
4	${}^{4}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{6}{5}\right)^{4-4} = 1 \cdot \frac{1}{625} = \frac{1}{625}$	

Binomial Distribution Ex 33.1 Q50

Here success is a score which is multiple of 3 i.e. 3 or

:
$$p(3 \text{ or } 6) = \frac{2}{6} = \frac{1}{3}$$

The probability of r successes in 10 throws is given by

$$P(r) = {}^{10}C_r \left(\frac{1}{3}\right)^r \left(\frac{2}{3}\right)^{10-r}$$

Now P(at least 8 successes) = P(8) + P(9) + P(10)

$$={}^{10}C_{8}{\left(\frac{1}{3}\right)}^{8}{\left(\frac{2}{3}\right)}^{2}+{}^{10}C_{9}{\left(\frac{1}{3}\right)}^{9}{\left(\frac{2}{3}\right)}^{1}+{}^{10}C_{10}{\left(\frac{1}{3}\right)}^{10}{\left(\frac{2}{3}\right)}^{0}$$

$$= \frac{1}{2^{10}} [45 \times 4 + 10 \times 2 + 1]$$

$$=\frac{201}{3^{10}}$$

Here success is an odd number i.e. 1,3 or 5.

$$p(1,3 \text{ or } 5) = \frac{3}{6} = \frac{1}{2}$$

The probability of r successes in 5 throws is given

$$P(r) = {}^{5}C_{r} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{5-r}$$

$$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{2}$$

Now P(exactly 3 times) = P(3)

Probablity of a man hitting a target is 0.25.

$$p = 0.25 = \frac{1}{4}, q = 1 - p = \frac{3}{4}$$

The probability of r successes in 7 shoots is given $P(r) = {}^{7}C_{s}(0.25)^{r}(0.75)^{7+r}$

Now P(at least twice) =
$$1 - P(less than 2)$$

$$= 1 - {}^{7}C_{0}(0.25)^{0}(0.75)^{7} + {}^{7}C_{1}(0.25)^{1}(0.75)^{6}$$

$$= 1 - C_0(0.25)(0.75) + C_1(0.25)(0.75)$$

$$= 1 - \frac{3^7}{4^7} + 7 \times \frac{3^6}{4^7}$$

Probablity of a bulb to be defective is
$$\frac{1}{50}$$
.

$$p = \frac{1}{50}, q = 1 - p = \frac{49}{50}$$

The probability of ridefective bulbs in 10 bulbs is given l

$$\mathbf{P}(\mathbf{r}) = {}^{10}\mathbf{C_r} \left(\frac{1}{50}\right)^{\mathbf{r}} \left(\frac{49}{50}\right)^{10-\mathbf{r}}$$

(i) P(none of the bulb is defective) = P(0)
$$= {}^{10}\text{Co}\left(\frac{1}{4}\right)^{0}\left(\frac{49}{49}\right)^{10}$$

$$= {}^{10}C_0 \left(\frac{1}{50}\right)^0 \left(\frac{49}{50}\right)^{10}$$

$$(49)^{10}$$

$$= \left(\frac{49}{50}\right)^{10}$$

(ii) P(exactly two bulbs are defective) = P(2)
=
$${}^{10}\text{Ce}\left(\frac{1}{2}\right)^2\left(\frac{49}{2}\right)^8$$

 $=45 \times \frac{(49)^{\circ}}{(50)^{10}}$

(ii) P(exactly two bulbs are defective) = P(2)
=
$${}^{10}\text{C}_2 \left(\frac{1}{50}\right)^2 \left(\frac{49}{50}\right)^8$$

= P(at most two bulbs are defective)
=
$${}^{10}\text{C}_0 \left(\frac{1}{50}\right)^0 \left(\frac{49}{50}\right)^{10} + {}^{10}\text{C}_1 \left(\frac{1}{50}\right)^1 \left(\frac{49}{50}\right)^9 + {}^{10}\text{C}_2 \left(\frac{1}{50}\right)^2 \left(\frac{49}{50}\right)^9 + {}^{10}\text{C}_2 \left(\frac{1}{50}\right)^9 \left(\frac{49}{50}\right)^9 + {}^{10}\text{C}_2 \left(\frac{$$

 $= \left(\frac{49}{50}\right)^{10} + 10 \times \frac{\left(49\right)^9}{\left(50\right)^{10}} + 45 \times \frac{\left(49\right)^9}{\left(50\right)^{10}}$

 $= \frac{\left(49\right)^8}{\left(50\right)^{10}} \left[\left(49\right)^2 + 490 + 45 \right]$

(iii) P(more than 8 bulbs work properly)

$$=\frac{(49)^8 \times 2936}{(50)^{10}}$$

Note: Answer given in the book is incorrect.