
RD SHARMA
Solutions
Class 10 Maths
Chapter 15
Ex15.2

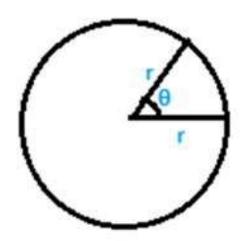
Q1. Find in terms of π , the length of the arc that subtends an angle of 30 degrees, at the center of 'O' of the circle with a radius of 4 cm.

Soln:

Given Data:

Radius = 4 cm

Angle subtended at the centre 'O' = 30°


Formula to be used:

Lengthofarc= $0360*2\pi$ rcmLengthofarc= $\frac{\theta}{360}*2\pi$ rcm Lengthofarc= $30360*2\pi*4$ cm Lengthofarc= $\frac{30}{360}*2\pi*4$ cm

 $= 2\pi 3 \text{ cm} \frac{2\pi}{3} \text{ cm}$

Therefore, the Length of arc the length of the arc that subtends an angle of 60 degrees is $2\pi 3$ CM $\frac{2\pi}{3}$ cm

Q2. Find the angle subtended at the centre of circle of radius 5 cm by an arc of length $5\pi 3\,\text{Cm}$ $\frac{5\pi}{3}cm$.

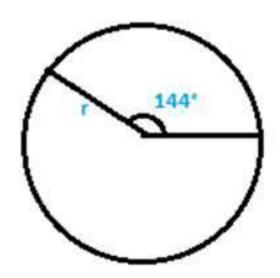
Given data:

Radius = 5 cm

Length of arc = $5\pi 3 \text{ cm} \frac{5\pi}{3} \text{ cm}$

Formula to be used:

Length of arc = θ 360 * 2π rcm $\frac{\theta}{360}$ * 2π rcm


 $5\pi 3 \text{ cm} \frac{5\pi}{3} \text{ cm} = 9360 * 2\pi \text{ rcm} \frac{\theta}{360} * 2\pi \text{ rcm}$

Solving the above equation, we have:

 $\theta = 60^{\circ}$

Therefore, angle subtended at the centre of circle is60°

Q3. An arc of length cm subtends an angle of 144° at the center of the circle.

Given Data: length of arc = cm

 θ = angle subtended at the centre of circle = 144°

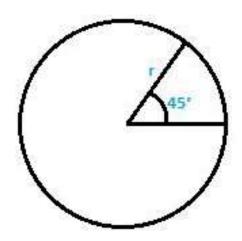
Formula to be used:

Length of arc = $\theta 360 * 2\pi rcm \frac{\theta}{360} * 2\pi rcm$

 $0.360*2\pi rcm \frac{\theta}{360}*2\pi rcm = 144360$ ast $2\pi rcm \frac{144}{360}$ ast $2\pi rcm$

$$= 4\pi 5 * rcm \frac{4\pi}{5} * rcm$$

As given in the question, length of arc = cm,


Therefore, cm = $4\pi 5 * rcm \frac{4\pi}{5} * rcm$

Solving the above equation, we have

r = 25 cm.

Therefore the radius of the circle is found to be 25 cm.

Q4. An arc of length 25 cm subtends an angle of 55° at the center of a circle. Find in terms of radius of the circle.

Given Data:

length of arc =25 cm

 θ = angle subtended at the centre of circle = 55°

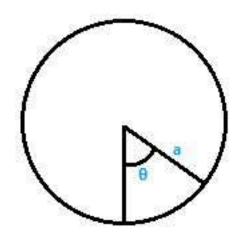
Formula to be used:

Length of arc = θ 360 *2 π rcm $\frac{\theta}{360}$ * 2π rcm

= $5536 * 2 \pi \text{rcm} \frac{55}{36} * 2 \pi \text{rcm}$

As given in the question length of arc =25 cm ,hence,

25 cm = 55360 *
$$2\pi$$
 * rcm $\frac{55}{360}$ * 2π * rcm


$$25 = 11\pi r 36 \frac{11\pi r}{36}$$

radius=
$$25*3611*\pi$$
 radius = $\frac{25*36}{11*\pi}$

$$= 90011\pi \frac{900}{11\pi}$$

Therefore, the radius of the circle is $90011\pi \frac{900}{11\pi}$

Q5. Find the angle subtended at the center of the circle of radius 'a' cm by an arc of fraca pi4 fraca pi4 length cm.

Given data:

Radius = a cm

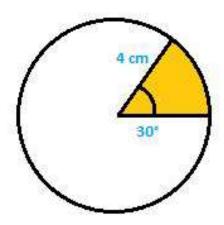
Length of arc = $a\pi 4 \frac{a\pi}{4}$ cm

 θ = angle subtended at the centre of circle

Formula to be used:

Length of arc = θ 360 *2 π rcm $\frac{\theta}{360}$ * 2π rcm

Length of arc = $\theta 360 * 2\pi acm \frac{\theta}{360} * 2\pi acm$


 $\theta 360 * 2\pi acm \frac{\theta}{360} * 2\pi acm = a\pi 4 \frac{a\pi}{4} cm$

Solving the above equation, we have

 $\theta = 45^{\circ}$

Therefore, the angle subtended at the centre of circle is 45°

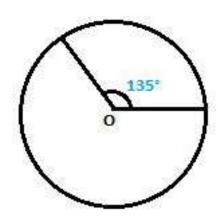
Q6. A sector of the circle of radius 4 cm subtends an angle of 30°. Find the area of the sector.

Given Data:

Radius = 4 cm

Angle subtended at the centre 'O' = 30°

Formula to be used:


Areaofthesector= Θ 360 * π r²Areaofthesector= $\frac{\Theta}{360}$ * π r² Areaofthesector=30360 * π 4² Areaofthesector= $\frac{30}{360}$ * π 4²

Solving the above equation, we have:

Area of the sector = 4.9 cm^2

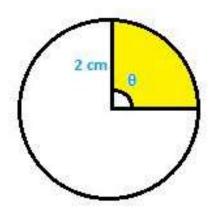
Therefore, Area of the sector is found to be 4.9 cm^2

Q7. A sector of a circle of radius 8 cm subtends an angle of 135°. Find the area of sector.

Given Data:

Radius = 8 cm

Angle subtended at the centre 'O' = 135°


Formula to be used:

Areaofthesector= Θ 360 * π r²Areaofthesector = $\frac{\Theta}{360}$ * π r² Areaofthesector=135360 * π 8² Areaofthesector = $\frac{135}{360}$ * π 8²

$$=5287 \frac{528}{7} \text{ cm}^2$$

Therefore, Area of the sector calculated is $\,$ 5287 $\frac{528}{7}$ $\,$ cm 2

Q8. The area of sector of circle of radius 2 cm is cm². Find the angle subtended by the sector.

Soln:

Given Data:

Radius = 2 cm

Angle subtended at the centre 'O' =?

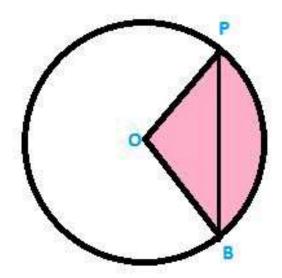
Area of sector of circle = cm^2

Formula to be used:

Areaofthesector= Θ 360 * π r²Areaofthesector= Θ 360 * π r² Areaofthesector= Θ 360 * π 3² Areaofthesector= Θ 360 * π 3²

$$= \pi\Theta 90 \frac{\pi\Theta}{90}$$

As given in the question area of sector of circle = cm^2


$$cm^2 = \pi\Theta 90 \frac{\pi\Theta}{90}$$

Solving the above equation, we have

$$\theta = 90^{\circ}$$

Therefore, the angle subtended at the centre of circle is 90°

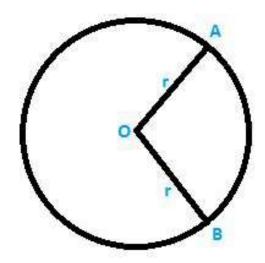
Q10. PQ is a chord of circle with centre 'O' and radius 4 cm. PQ is of the length 4 cm. Find the area of sector of the circle formed by chord PQ.

Soln:

Given Data: PQ is chord of length 4 cm.

OPQ is an equilateral triangle.

Area of sector (formed by the chord (shaded region)) = (area of sector)


Formula to be used:

Areaofthesector= Θ 360 * π r²Areaofthesector= Θ 360 * π r² Areaofthesector= Θ 360 * π 4² Areaofthesector= Θ 360 * π 4²

$$= 32\pi 3 \frac{32\pi}{3}$$

Therefore, Area of the sector is $32\pi 3 \frac{32\pi}{3} \text{ cm}^2$

Q11. In a circle of radius 35 cm, an arc subtends an angle of 72° at the centre. Find the length of arc and area of sector.

Soln:

Given Data:

Radius = 35 cm

Angle subtended at the centre 'O' = 72°

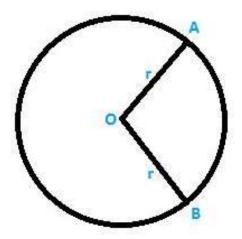
Area of sector of circle =?

Formula to be used:

Lengthofarc= θ 360 *2 π rcmLengthofarc= $\frac{\theta}{360}$ * 2π rcm Lengthofarc= 108360 *2 π x42cm Lengthofarc= $\frac{108}{360}$ * 2π x42cm

Solving the above equation we have,

Length of arc = 44 cm


We know that,

Areaofthesector= Θ 360 * π r²Areaofthesector = $\frac{\Theta}{360}$ * π r² Areaofthesector=72360 * π 35² Areaofthesector = $\frac{72}{360}$ * π 35²

Solving the above equation, we have, Area of the sector = (35×22) cm²

Therefore, Area of the sector is 770 cm²

Q12. The perimeter of a sector of a circle of radius 5.7 m is 27.2m. find the area of the sector.

Soln:

Given Data:

Radius = 5.7 cm = OA = OB [from the figure shown above]

Perimeter = 27.2 m

Let the angle subtended at the centre be $\boldsymbol{\theta}$

Perimeter =
$$\theta$$
360 * 2π rcm $\frac{\theta}{360}$ * 2π rcm + OA + OB

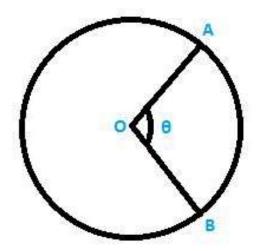
=
$$0360*2\pi x5.7$$
cm $\frac{\theta}{360}*2\pi x5.7$ cm + 5.7 + 5.7

Solving the above equation we have,

$$\theta = 158.8^{\circ}$$

We know that,

Areaofthesector= Θ 360 * π r²Areaofthesector = $\frac{\Theta}{360}$ * π r²


Area of the sector = 158.8360 * π 5.7² $\frac{158.8}{360}$ * π 5.7²

Solving the above equation we have,

Area of the sector = 45.048 cm^2

Therefore, Area of the sector is 45.048 cm²

Q13. The perimeter of a certain sector of a circle of radius is 5.6 m and 27.2 m. find the area of a sector.

Soln:

Given data:

Radius of the circle = 5.6 m = OA = OB

(AB arc length) + OA + OB = 27.2

Let the angle subtended at the centre be θ

We know that,

Length of arc = $\theta 360 * 2\pi rcm \frac{\theta}{360} * 2\pi rcm$

$$\theta 360 * 2 \pi r cm \frac{\theta}{360} * 2 \pi r cm + OA + OB = 27.2 m$$

$$\theta$$
360 *2 π rcm $\frac{\theta}{360}$ * 2 π rcm + 5.6 + 5.6 = 27.2 m

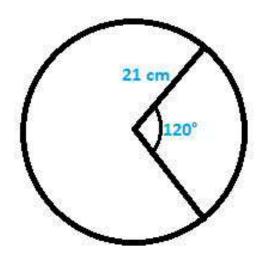
Solving the above equation, we have,

$$\theta = 163.64^{\circ}$$

We know that,

Areaofthesector= $\Theta360*\pi r^2$

Areaofthesector = $\frac{\Theta}{360} * \pi r^2$ Areaofthesector = 163.64360 * π 5.6² Areaofthesector = $\frac{163.64}{360} * \pi$ 5.6²


Areaofthesector =
$$\frac{\frac{363.64}{360}}{360} * \pi 5.6^2$$

On solving the above equation, we have,

Area of the sector = 44.8 cm^2

Therefore, Area of the sector is 44.8 cm²

Q14. A sector was cut from a circle of radius 21 cm. The angle of sector is 120°. Find the length of its arc and its area.

Soln:

Given data:

Radius of circle (r) = 21 cm

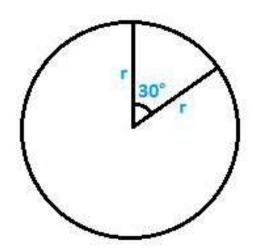
 θ = angle subtended at the centre of circle = 120°

Formula to be used:

Lengthofarc= θ 360*2 π rcmLengthofarc= $\frac{\theta}{360}$ *2 π rcm Lengthofarc=120360*2 π x21cm Lengthofarc = $\frac{120}{360} * 2\pi x 21$ cm

On solving the above equation, we get,

Length of arc = 44 cm


We know that,

Areaofthesector= Θ 360 * π r²Areaofthesector= $\frac{\Theta}{360}$ * π r² Areaofthesector=120360 * π 21² Areaofthesector= $\frac{120}{360}$ * π 21²

Area of the sector = (22×21) cm²

Therefore, Area of the sector is 462 cm²

Q15. The minute hand of a circle is $\sqrt{21}\sqrt{21}$ cm long. Find the area described by the minute hand on the face of clock between 7:00 a.m to 7:05 a.m.

Soln:

Given data:

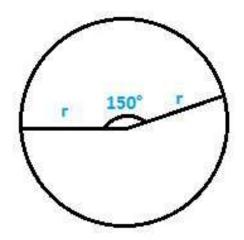
Radius of the minute hand (r) = $\sqrt{21}\sqrt{21}$ cm

Time between 7:00 a.m to 7:05a.m = 5 min

We know that, 1 hr = 60 min, minute hand completes

One revolution = 360°

 $60 \text{ min} = 360^{\circ}$


 θ = angle subtended at the centre of circle = 5 x 6° = 30°

Areaofthesector= Θ 360 * π r²Areaofthesector = $\frac{\Theta}{360}$ * π r² Areaofthesector=30360 * pi35² Areaofthesector = $\frac{30}{360}$ * pi35²

Area of the sector = 5.5 cm^2

Therefore, Area of the sector is 5.5 cm²

Q 16. The minute hand of clock is 10 cm long. Find the area of the face of the clock described by the minute hand between 8 a.m to 8:25 a.m.

Soln:

Given data:

Radius of the circle = radius of the clock = length of the minute hand = 10 cm

We know that, 1 hr = 60 min

 $60 \text{ min} = 360^{\circ}$

 $1 \text{ min} = 6^{\circ}$

Time between 8:00 a.m to 8:25 a.m = 25 min

Therefore, the subtended = 6° x $25 = 150^{\circ}$

Formula to be used:

Areaofthesector= Θ 360 * π r²Areaofthesector= $\frac{\Theta}{360}$ * π r² Areaofthesector=150360 * π 10² Areaofthesector= $\frac{150}{360}$ * π 10²

Area of the sector = $916.6 \text{ cm}^2 = 917 \text{ cm}^2$

Therefore, Area of the sector is 917 cm²

Q17. A sector of 56° cut out from a circle subtends area of 4.4 cm². Find the radius of the circle.

Soln:

Given data:

Angle subtended by the sector at the centreof the circle, $\theta = 56^{\circ}$

Let the radius of the circle be = 'r' cm

Formula to be used:

Areaofthesector= $56360*\pi r^2$ Areaofthesector= $\frac{56}{360}*\pi r^2$

On solving the above equation, we get,

$$r^2 = \sqrt{91} \sqrt{\frac{9}{1}}$$
 cm

r = 3 cm

Therefore, radius of the circle is r = 3 cm

Q18. In circle of radius 6 cm. Chord of length 10 cm makes an angle of 110° at the centre of circle. Find:

- (i) Circumference of the circle
- (ii) Area of the circle
- (iii) Length of arc
- (iv) The area of sector

Soln:

Given data:

Radius of the circle = 6 cm

Chord of length = 10 cm

Angle subtended by chord with the centre of the circle = 110°

Formulae to be used:

Circumference of a circle = 2

Area of a Circle =

Areaofthesector= Θ 360 * π r²Areaofthesector = $\frac{\Theta}{360}$ * π r² Lengthofarc=90360 * 2π x28cm Lengthofarc = $\frac{90}{360}$ * 2π x28cm

Circumference of a circle = $2 = 2 \times 3.14 \times 8 = 37.7 \text{ cm}$

Area of a Circle = $= 3.14 \times 6 \times 6 = 113.14 \text{ cm}^2$

Areaofthesector= Θ 360 * π r²Areaofthesector= $\frac{\Theta}{360}$ * π r² Areaofthesector=110360 * π 6² Areaofthesector= $\frac{110}{360}$ * π 6²

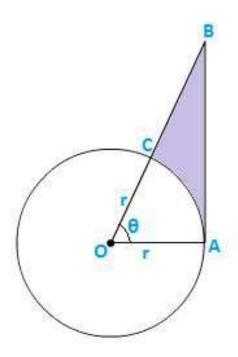
On solving the above equation we get,

Area of the sector = 33.1 cm^2

Lengthofarc= θ 360 *2 π rcmLengthofarc= $\frac{\theta}{360}$ * 2π rcm Lengthofarc=110360 *2 π 6cm Lengthofarc= $\frac{110}{360}$ * 2π 6cm

On solving the above equation we get,

Length of arc = 22.34 cm.


Therefore, Circumference = 37.7 cm

Area of a Circle = 113.14 cm²

Area of the sector = 33.1 cm^2

Q19. The given figure shows a sector of a circle with centre 'O' subtending an angle θ °. Prove that:

- 1. Perimeter of shaded region is $r(\tan\theta + \sec\theta + (\pi \tan\theta + \sec\theta + (\frac{\pi \tan\theta}{180}) 1)r(\tan\theta + \sec\theta + (\frac{\pi \tan\theta}{180}) 1)$
- 2. Area of the shaded region is $r^2 2 (\tan \theta \pi \theta 180) \frac{r^2}{2} (\tan \theta \frac{\pi \theta}{180})$

Given Data: Angle subtended at the centre of the circle = θ°

Angle OAB = 90° [at point of contact, tangent is perpendicular to radius]

OAB is a right angle triangle

$$\cos \theta = \text{adjside} + \text{potenuse} = \cos \theta = \cos$$

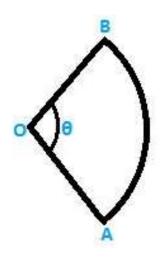
$$\sec \theta = \text{oppsideadjside} = ABr = AB = r \tan \theta \frac{\text{oppside}}{\text{adjside}} = \frac{AB}{r} = AB = r \tan \theta$$

Perimeter of the shaded region = AB + BC + CA (arc)

=
$$r \tan\theta + (OB - OC) + \theta 360 * 2\pi rcm \frac{\theta}{360} * 2\pi rcm$$

=
$$r(\tan\theta + \sec\theta + \pi\theta 180 - 1)r(\tan\theta + \sec\theta + \frac{\pi\theta}{180} - 1)$$

Area of the shaded region = (area of triangle AOB) - (area of sector)


(12*OA*AB)-0360*
$$\pi r^2(\frac{1}{2}*OA*AB)-\frac{\theta}{360}*\pi r^2$$

On solving the above equation we get,

$$r^{2}$$
2[tanθ-πθ180] $\frac{r^{2}}{2}$ [tanθ- $\frac{\pi\theta}{180}$]

Q 20. The diagram shows a sector of circle of radius 'r' cm subtends an angle θ . The area of sector is A cm² and perimeter of sector is 50 cm. Prove that θ = 360 π (25r=1)

$$\theta = \frac{360}{\pi} (\frac{25}{r} - 1)$$
 and A = 25 r - r²

Soln:

Given Data:

Radius of circle = 'r' cm

Angle subtended at centre of the circle = θ

Perimeter = OA + OB + (AB arc)

$$r + r + \, \theta 360 * 2\pi r = 2r + 2r \big[\, \pi \theta 360 \, \big] r + r + \, \frac{\theta}{360} \, * \, 2\pi r = 2r + 2r \, \big[\frac{\pi \theta}{360} \big]$$

As given in the question, perimeter = 50

$$\theta$$
= 360 π [25 r -1] $\theta = \frac{360}{\pi} [\frac{25}{r} - 1]$

Therefore,
$$\theta = 360\pi [25r - 1]\theta = \frac{360}{\pi} [\frac{25}{r} - 1]$$

Areaofthesector= Θ 360* π r²Areaofthesector= $\frac{\Theta}{360}$ * π r²

On solving the above equation, we have

$$A = 25r - r^2$$

Hence, proved.