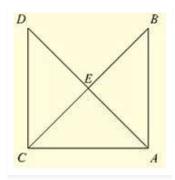

RD SHARMA
Solutions
Class 9 Maths
Chapter 10
Ex 10.4


(1) In fig (10).9(2) It is given that AB = CD and AD = BC. Prove that $\triangle ADC \cong \triangle CBA$.

Solution:

Given that in the figure AB = CD and AD = BC.

We have to prove $\triangle ADC \cong \triangle CBA$

Now,

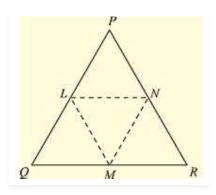
Consider Δ ADC and Δ CBA.

We have

AB = CD [Given]

BC = AD [Given]

And AC = AC [Common side]


So, by SSS congruence criterion, we have

 $\triangle ADC \cong \triangle CBA$

Hence proved

(2) In a \triangle PQR. IF PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.

Sol: Given that in \triangle PQR, PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively We have to prove LN = MN.

Join L and M, M and N, N and L

We have PL = LQ, QM = MR and RN = NP

[Since, L, M and N are mid-points of Pp. QR and RP respectively]

And also PQ = QR

PL = LQ = QM = MR =
$$\frac{PQ}{2}$$
 = $\frac{QR}{2}$ (i) Using mid-point theorem,

We have

MN || PQ and MN =
$$\frac{PQ}{2}$$

Similarly, we have

LN
$$\parallel$$
 QR and LN = $(1/2)$ QR

From equation (i), (ii) and (iii), we have

LN = MN