RD SHARMA
Solutions
Class 8 Maths
Chapter 1
Ex 1.7

Q-1. Divide:

- (i) 1 by $\frac{1}{2}$
- (ii) 5 by $\frac{-5}{7}$
- (iii) $\frac{-3}{4}$ by $\frac{1}{2}$
- (iv) $\frac{-7}{8}$ by $\frac{-21}{16}$
- (v) $\frac{7}{-4}$ by $\frac{63}{64}$
- (vi) 0 by $\frac{-7}{5}$
- (vii) $\frac{-3}{4}$ by 6
- (viii) $\frac{2}{3}$ by $\frac{-7}{12}$
- (ix) -4 by $\frac{-3}{5}$
- (x) $\frac{-3}{13}$ by $\frac{-4}{65}$

Solution

- (i) $1 \div \frac{1}{2} = 1 \times \frac{2}{1} = 2$
- (ii) $5 \div \frac{-5}{7} = 5 \times \frac{7}{-5} = -7$
- (iii) $\frac{-3}{4} \div \frac{9}{-16} = \frac{-3}{4} \times \frac{-16}{9} = \frac{4}{3}$
- (iv) $\frac{-7}{8} \div \frac{-21}{16} = \frac{-7}{8} \times \frac{-16}{21} = \frac{2}{3}$
- (v) $\frac{-7}{4} \div \frac{63}{64} = \frac{7}{-4} \times \frac{64}{63} = \frac{-16}{9}$
- (vi) $0 \div \frac{-7}{5} = 0 \times \frac{-5}{7} = 0$
- (vii) $\frac{-3}{4} \div -6 = \frac{-3}{4} \times \frac{1}{-6} = \frac{1}{8}$
- (viii) $\frac{2}{3} \div \frac{-7}{12} = \frac{2}{3} \times \frac{12}{-7} = \frac{-8}{7}$

$$(ix) - 4 \div \frac{-3}{5} = -4 \times \frac{5}{-3} = \frac{20}{3}$$

$$(\mathbf{x}) \frac{-3}{13} \div \frac{-4}{65} = \frac{-3}{13} \times \frac{65}{-4} = \frac{15}{4}$$

Q-2. Find the value and express as a rational number in standard form:

(i)
$$\frac{2}{5} \div \frac{26}{15}$$

(ii)
$$\frac{10}{3} \div \frac{-35}{12}$$

(iii)
$$-6 \div \frac{-8}{17}$$

(iv)
$$\frac{-40}{99} \div (-20)$$

(v)
$$\frac{-22}{27} \div \frac{-110}{18}$$

(vi)
$$\frac{-36}{125} \div \frac{-3}{75}$$

(i)
$$\frac{2}{5} \div \frac{26}{15} = \frac{2}{5} \times \frac{15}{26} = \frac{3}{13}$$

(ii)
$$\frac{10}{3} \div \frac{-35}{12} = \frac{10}{3} \times \frac{12}{-35} = \frac{-8}{7}$$

(iii)
$$-6 \div \frac{-8}{17} = -6 \times \frac{17}{-8} = \frac{51}{4}$$

(iv)
$$\frac{-40}{99} \div (-20) = \frac{-40}{99} \times \frac{1}{-20} = \frac{2}{99}$$

(v)
$$\frac{-22}{27} \div \frac{-110}{18} = \frac{-22}{27} \times \frac{18}{-110} = \frac{2}{15}$$

(vi)
$$\frac{-36}{125} \div \frac{-3}{75} = \frac{-36}{125} \times \frac{75}{-3} = \frac{36}{5}$$

Q-3. The product of two rational numbers is 15. If one of the numbers is -10. Find the other number.

Solution:

Let, the other number be x.

So,
$$x \times (-10) = 15$$

$$\Rightarrow$$
 x = $\frac{15}{-10}$ = $\frac{3}{-2}$

 $\Rightarrow X = \frac{15}{-10} = \frac{3}{-2}$ So, the other number is $\frac{-3}{2}$.

Q-4. The product of two rational numbers is $\frac{-8}{9}$. If one of the number is $\frac{-4}{15}$, Find the other number.

Solution: Let, the other number be x.

$$S_{0, X} \times \frac{-4}{15} = \frac{-8}{9}$$

$$\Rightarrow \chi = \frac{-8}{9} \div \frac{-4}{15} \Rightarrow \chi = \frac{-8}{9} \times \frac{15}{-4} \Rightarrow \chi = \frac{10}{3}$$
 Thus, the other number is $\frac{10}{3}$

Q-5. By what number should we multiply $\frac{-1}{6}$ so that the product may be $\frac{-23}{9}$?

Solution:

Let, the number be \boldsymbol{x} .

$$\chi \times \frac{-1}{6} = \frac{-23}{9}$$

$$\Rightarrow \chi = \frac{-23}{9} \div \frac{-1}{6}$$

$$\Rightarrow$$
 $\chi = \frac{-23}{9} \times \frac{6}{-1}$

$$\Rightarrow x = \frac{46}{3}$$

Thus, the other number is $\frac{46}{3}$

Q-6. By what number should we multiply $\frac{-15}{28}$ so that the product may be $\frac{-5}{7}$?

Solution:

Let, the number be x

$$\chi \times \frac{-15}{28} = \frac{-5}{7}$$

$$\Rightarrow x = \frac{-5}{7} \div \frac{-15}{28}$$

$$\Rightarrow$$
 $X = \frac{-5}{7} \times \frac{28}{-15}$

$$\Rightarrow x = \frac{4}{3}$$

Thus, the other number is $\frac{4}{3}$

Q-7. By what number should we multiply $\frac{-8}{13}$ so that the product may be 24?

Solution:

Let, the number be x.

$$_{X}\times\frac{-8}{13}=24$$

$$\Rightarrow x = 24 \div \frac{-8}{13}$$

$$\Rightarrow x = 24 \times \frac{13}{-8} \Rightarrow x = -39$$

Q-8. By what number should $\frac{-3}{4}$ be multiplied in order to produce $\frac{2}{3}$?

Solution:

Let, the other number that should be multiplied with $\frac{-3}{4}$ to produce $\frac{2}{3}$ be x.

$$X \times \frac{-3}{4} = \frac{2}{3}$$

$$\Rightarrow$$
 $x = \frac{2}{3} \div \frac{-3}{4}$

$$\Rightarrow$$
 $X = \frac{2}{3} \times \frac{4}{-3}$

$$\Rightarrow x = \frac{-8}{9}$$

Thus, the other number is $\frac{-8}{9}$

Q-9. Find $(x + y) \div (x - y)$, if

(i)
$$x = \frac{2}{3}, y = \frac{3}{2}$$

(ii)
$$x = \frac{2}{5}, y = \frac{1}{2}$$

(iii)
$$x = \frac{5}{4}, y = \frac{-1}{3}$$

(iv)
$$x = \frac{2}{7}, y = \frac{4}{3}$$

(v)
$$x = \frac{1}{4}$$
, $y = \frac{3}{2}$

Solution:

(i)
$$(x + y) \div (x-y)$$

$$=\left(\frac{2}{3}+\frac{3}{2}\right)\div\left(\frac{2}{3}-\frac{3}{2}\right)$$

$$=\frac{13}{6}\times\frac{6}{-5}=\frac{-13}{5}$$

Thus,
$$(x + y) \div (x - y) = \frac{-13}{5}$$

(ii)
$$(x + y) \div (x - y)$$

$$=\left(\frac{2}{5}+\frac{1}{2}\right)\div\left(\frac{2}{5}-\frac{1}{2}\right)$$

$$=\frac{9}{10}\times\frac{10}{-1}=-9$$

Thus,
$$(x + y) \div (x - y) = -9$$

(iii)
$$(x + y) \div (x - y)$$

$$=\left(\frac{5}{4}+\frac{-1}{3}\right)\div\left(\frac{5}{4}-\frac{-1}{3}\right)$$

$$=\frac{11}{12}\times\frac{12}{11}=\frac{11}{19}$$

Thus,
$$(x + y) \div (x - y) = \frac{11}{19}$$

(iv)
$$(x + y) \div (x - y)$$

$$=\left(\frac{2}{7}+\frac{4}{3}\right)\div\left(\frac{2}{7}-\frac{4}{3}\right)$$

$$=\frac{34}{21}\times\frac{21}{-22}=\frac{-17}{11}$$

Thus,
$$(x + y) \div (x - y) = \frac{-17}{11}$$

$$(\mathbf{v})(\mathbf{x}+\mathbf{y}) \div (\mathbf{x}-\mathbf{y})$$

$$=\left(\frac{1}{4}+\frac{3}{2}\right)\div\left(\frac{1}{4}-\frac{3}{2}\right)$$

$$=\frac{7}{4}\times\frac{4}{-5}=\frac{-7}{5}$$

Thus,
$$(x + y) \div (x - y) = \frac{-7}{5}$$

Q-10: The cost of $7\frac{2}{3}$ metres of rope is Rs $12\frac{3}{4}$. Find its cost per metres.

Solution: The cost of $7\frac{2}{3}$ metres of rope is Rs. $7\frac{2}{3}$

Therefore,

Cost per metre = $7\frac{2}{3} \div 7\frac{2}{3}$

$$= \frac{51}{4} \div \frac{23}{3} = \frac{51}{4} \times \frac{3}{23}$$
$$= \frac{153}{92} = \text{Rs. } 1\frac{61}{92}$$

Hence, the cost of rope per metres = Rs. $1\frac{61}{92}$

Q-11. The cost of $2\frac{1}{3}$ metres of cloth is Rs. $75\frac{1}{4}$. Find the cost of cloth per metres.

Solution: The cost of $2\frac{1}{3}$ metres of cloth is Rs. $75\frac{1}{4}$

Therefore,

Cost per metre = $75\frac{1}{4} \div 2\frac{1}{3}$

$$= \frac{301}{4} \div \frac{7}{3} = \frac{301}{4} \times \frac{3}{7}$$
$$= \frac{129}{4} = \text{Rs. } 32\frac{1}{4}$$

Thus, Rs. $32\frac{1}{4}$ or Rs. 32.25 is the cost of cloth per metre.

Q-12. By what number should $\frac{-33}{16}$ be divided to get $\frac{-11}{4}$?

Solution:

Let, the other number be x.

$$\frac{-33}{16} \div \chi = \frac{-11}{4} \Rightarrow \frac{-33}{16} \times \frac{1}{x} = \frac{-11}{4} \Rightarrow \frac{1}{x} = \frac{-11}{4} \times \frac{16}{-33} \Rightarrow \frac{1}{x} = \frac{4}{3} \Rightarrow \chi = \frac{3}{4}$$
Thus, the other number is $\frac{3}{4}$

Q-13. Divide the sum of $\frac{-13}{5}$ and $\frac{12}{7}$ by the product of $\frac{-31}{7}$ and $\frac{-1}{2}$?

Solution:

Q-14. Divide the sum of $\frac{65}{12}$ and $\frac{12}{7}$ by their differences.

Solution:

$$\begin{aligned} &\left(\frac{65}{12} + \frac{12}{7}\right) \div \left(\frac{65}{12} - \frac{12}{7}\right) \\ &= \frac{65 \times 7 + 12 \times 12}{84} \div \frac{65 \times 7 - 12 \times 12}{84} \\ &= \frac{455 + 144}{84} \div \frac{455 - 144}{84} \\ &= \frac{599}{84} \div \frac{311}{84} \\ &= \frac{599}{84} \times \frac{84}{311} = \frac{599}{311} \end{aligned}$$

Q-15. If 24 trousers of equal size can be prepared in 54 meters of cloth, what length of cloth is required for each trouser?

Solution:

Cloth needed to prepare 24 trousers = 54 m

So.

Length of the cloth required for each trousers = $54 \div 24 = \frac{54}{24} = \frac{9}{4}$ m = $2\frac{1}{4}$ metres.