RD SHARMA
Solutions
Class 6 Maths
Chapter 2
Ex 2.4

1.) In which of the following expressions, prime factorization has been done?

Answer:

(i) $24 = 2 \times 3 \times 4$ is not a prime factorization as 4 is not a prime number.

(ii) $56 = 1 \times 7 \times 2 \times 2 \times 2$ is not a prime factorization as 1 is not a prime number.

(iii) $70 = 2 \times 5 \times 7$ is a prime factorization as 2, 5, and 7 are prime numbers.

(iv) $54 = 2 \times 3 \times 9$ is not a prime factorization as 9 is not a prime number.

2.) Determine prime factorization of each of the following numbers:

Answer:

(i) 216

We have:

2	216
2	108
2	54
3	27
3	9
3	3
	1

Therefore, Prime factorization of 216 = 2 x 2 x 2 x 3 x 3

(ii) 420

We have:

2	420
2	210
3	105
5	35
7	7
	1

Therefore, Prime factorization of 420= 2 x 2 x 3 x 5 x 7

(iii) 468

We have:

2	468
2	234
3	117
3	39
13	13
	1

Therefore, Prime factorization of $468 = 2 \times 2 \times 3 \times 3 \times 13$

We have:

3	945
3	315
3	105
5	35
7	7
	1

Therefore, Prime factorization of $945 = 3 \times 3 \times 3 \times 5 \times 7$

(v) 7325

We have:

5	7325
5	1465
293	293
	1

Therefore, Prime factorization of 7325= 5 x 5 x 293

(vi) 13915

We have:

5	13915
11	2783
11	253
23	23
	1

Therefore, Prime factorization of $13915 = 5 \times 11 \times 11 \times 23$

3.) Write the smallest 4-digit number and express it as a product of primes.

Answer:

The smallest 4-digit number is 1000.

 $1000 = 2 \times 500$

=2 x2 x250

=2 x2 x2 x 125

=2 x2x2x5x 25

 $=2 \times 2 \times 2 \times 5 \times 5 \times 5$

Therefore, 1000=2 x2 x2x5x5x5

4.) Write the largest 4-digit number and express it as product of primes.

Answer

The largest 4-digit number is 9999.

We have:

3	9999	
3	3333	

11	1111
101	101
	1

Hence, the largest 4-digit number 9999 can be expressed in the form of its prime factors as 3 x 3 x 11 x 101.

5.) Find the prime factors of 1729. Arrange the factors in ascending order, and find the relation between two consecutive prime factors.

Answer:

The given number is 1729.

We have:

7	1729
13	247
19	19

Thus, the number 1729 can be expressed in the form of its prime factors ass $7 \times 13 \times 19$.

Relation between its two consecutive prime factors:

The consecutive prime factors of the given number are 7, 13 and 19.

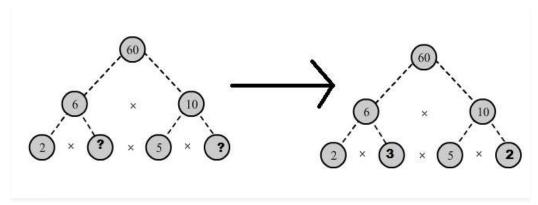
Clearly, 13 - 7 = 6 and 19 - 13 = 6

Here, in two consecutive prime factors, the latter is 6 more than the previous one.

6.) Which factors are not included in the prime factorization of a composite number?

Answer:

1 and the number itself are not included in the prime factorization of a composite number.


Example: 4 is a composite number.

Prime factorization of $4 = 2 \times 2$.

7.) Here are two different factor trees for 60. Write the missing numbers:

Answer:

(i) Since $6 = 2 \times 3$ and $10 = 5 \times 2$. We have:

(ii) Since $60 = 30 \times 2$.

 $30 = 10 \times 3$ and $10 = 5 \times 2$ we have: