Model Question Paper

Nuclear physics - Part I

12th Standard

	12th Standard				
	Physics	Reg.No.:			
	I.Answer all the questions.				
II.U	Jse Blue pen only.				
Tir	ne : 01:00:00 Hrs		Tota	l Mark	s:85
	Section-A			4 x	1 = 4
1)	The nuclear radius of $_4Be^8$ nucleus is				
	(a) $1.3 \times 10^{-15} m$ (b) $2.6 \times 10^{-15} m$ (c) $1.3 \times 10^{-13} m$ (d) $2.6 \times 10^{-13} m$				
2)	The nuclei $_{13}Al^{27}$ and $_{14}Si^{28}$ are example of				
	(a) isotopes (b) isobars (c) isotones (d) isomers				
3)	The mass defect of a certain nucleus is found to be 0.03 amu.Its binding enrgy is				
	(a) 27.93eV (b) 27.93KeV (c) 27.93MeV (d) 27.93GeV				
4)	Nuclear fission can be explained by				
	(a) shell model (b) liquid drop model (c) quark model (d) Bohr atom model				
	Section-B			5 x 3	3 = 15
5)	What are isotopes? Give an example.				
6)	What are isobars? Give examples.				
7)	What are isotones? Give examples.				
8)	Select the pairs of isotopes, isobars and isotones from the following nuclei: 11Na ²² , 12Mg ²⁴ , 11Na ²⁴ , 10Ne ²³ .				
9)	Define: amu and give the mass equivalent and energy equivalent of 1 amu.				
	Section-C			4 x 5	5 = 20
10	Section-C Show that nuclear density is almost a constant for all nuclei. Explain the variation of binding energy with mass number by a graph and discuss its features Explain the different characteristics of nuclear forces. Explain the Soddy-Fajan's radioactive displacement law. Section-D a) How do you classify the elementary particles into four groups?				
11	Explain the variation of binding energy with mass number by a gr <mark>aph and discuss its features</mark>				
12	Explain the different characteristics of nuclear forces.				
13	Explain the Soddy-Fajan's radioactive displacement law.				
	Section-D			4 x 10	0 = 40
14	a) How do you classify the elementary particles into four groups?				
	(OR)				
	b) Describe the discovery of neutrons. Mention the properties of neutrons.				
15)	a) Describe the principle and action of a Bainbridge mass spectrometer to determine the isotopic masses.				
	(OR)				

b) Explain the construction and working of a GM (Geiger-Muller) counter.
