Model Question Paper

Differential Calculus Part I - Part V

12th Standard

Maths	Reg.No.:

5 x 1 = 5

I.Answer all questions.

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 85 Section-A

1) $\lim_{x \to a} \frac{x}{\tan x}$ is (a) 1 (b) -1 (c) 0 (d) ∞

2) f is a real valued function defined on an interval $I\subset R$ (R being the set of real numbers) increased on l. Then

 $\text{(a)} \ \ f\left(x_{1}\right) \leq f\left(x_{2}\right) \ \text{whenever} \ x_{1} < x_{2} \quad x_{1}, x_{2} \in I \qquad \text{(b)} \quad f\left(x_{1}\right) \geq f\left(x_{2}\right) \ \text{whenever} \ \ x_{1} > x_{2} \quad x_{1}, x_{2} \in I$

(c) $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ whenever $x_{1} > x_{2}$ $x_{1}, x_{2} \in I$ (d) $f\left(x_{1}\right) > f\left(x_{2}\right)$ whenever $x_{1} > x_{2}$ $x_{1}, x_{2} \in I$

3) If a real valued differentiable function $y=f\left(x
ight)$ defined on an open interval I is increasing then

(a)
$$\frac{dy}{dx} > 0$$
 (b) $\frac{dy}{dx} \geq 0$ (c) $\frac{dy}{dx} < 0$ (d) $\frac{dy}{dx} \leq 0$

4) The function $f(x) = x^3$ has

(a) absolute maximum (b) absolute minimum (c) local maximum (d) no extrema

5) If f has a local extremum at a and if f '(a) exists then

(a) f'(a) < 0 (b) f'(a) > 0 (c) f'(a) = 0 (d) f''(a) = 0

Section-B 6 x 6 = 36

6) Using Rolle's theorem find the points on the curve $y = x^2 + 1, -2 \le x \le 2$ where the tangent is parallel to x – axis.

7) Determine where the curve $y=x^3-3x+1$ is concave upward and where it is concave downward. Also find the inflection points.

Find the equation of the tangent and normal to the curves $y = x - \sin x \cos x$, $at \quad x = \frac{\pi}{2}$

9) Find the equation of the tangent and normal to the curves $y=2\sin^2 3x$ at $x=\frac{\pi}{6}$

15) a) Find the local minimum and maximum values of $f(x) = 2x^3 + 3x^2 - 36x + 10$

10) Find the equation of the tangent and normal to the curves $y = \frac{1+\sin x}{\cos x}$ at $x = \frac{\pi}{4}$

11) Evaluate the limit for the following if exists . $\lim_{x\to 0}(\cos x)^{1/x}$

Section-C 5 x 10 = 50

12) Evaluate: $\lim_{n \to \infty} (\tan x)^{\cos x}$

13) Find the intervals of concavity and the points of inflection of the following functions : $f(\theta) = sin2\theta$ in $(0,\pi)$

14) Obtain the Maclaurin's series expansion for $\tan x$, $\frac{-\pi}{2} < x < \frac{\pi}{2}$

Find the equations of the tangent and normal to the ellipse x=a $\cos heta$, y=b $\sin heta$ at the point $heta=rac{\pi}{4}$
