Model Question Paper

Sequences and Series of real numbers - Part V

10th Standard

	Maths	Reg.No. :			1
Answer all the questions.					

II.Use Blue pen only.

Time: 01:15:00 Hrs Total Marks: 60 4 x 1 = 4

Section-A 1) If $x \neq 0$, then $1sec \quad x + sec^2 \quad x + sec^3 \quad x + sec^4 \quad x + sec^5 \quad x$ is equal to

If
$$x \neq 0$$
, then $1sec - x + sec^2 - x + sec^3 - x + sec^4 - x + sec^5 - x$ is equal to
(a) $(1 + sec - x) + (sec^2 - x + sec^3 - x + sec^4 - x)$ (b) $(1 + sec - x) (1 + sec^2 - x + sec^4 - x)$ (c) $(1 - sec - x) (sec - x + sec^3 - x + sec^5 - x)$ (d) $(1 + sec - x) (1 + sec^3 - x + sec^4 - x)$

2) If the n^{th} term of an A.P. is $t_n=3-5n,$ then the sum of the first n terms is

(a) $\frac{n}{2}[1-5n]$ (b) n(1-5n) (c) $\frac{n}{2}(1+5n)$ (d) $\frac{n}{2}(1+n)$ 3) The common ratio of the G.P. a^{m-n}, a^m, a^{m+n} is

(a) a^m (b) a^{-m} (c) a^n (d) a^{-n} 4) If 1 + 2 + 3 + ... + n = k then $1^3 + 2^3 + ... + n^3$ is equal to (a) k^2 (b) k^3 (c) $\frac{k(k+1)}{2}$ (d) $(k+1)^3$

5 x 2 = 10

5) Find S_n for each of the geometric series described below: a=2400, r=-3, n=5

6) Find the value of k if $1^3 + 2^3 + 3^3 + \dots + k^3 = 2025$.

7) How many consecutive terms starting from the first term of the series $2+6+18+\cdots$ would sum to 728?

8) Find S_n for each of the geometric series described below. a = 5, r = 3, n = 12.

9) Find the sum of the first 125 natural numbers.

Section-C 5 x 5 = 25

10) Find the sum of the following series $1^2 + 3^2 + 5^2 + \cdots + 51^2$.

11) Find the sum of the series. $11^3 + 12^3 + 13^3 + \cdots + 28^3$

12) If $1+2+3+\cdots+n=120$, find $1^3+2^3+3^3+\cdots n^3$.

13) Find the sum of first n terms of the series $0.4 + 0.94 + 0.994 + \cdots$

14) Find the sum of the following finite series $1 + 11 + 111 + \cdots$ to 20 terms.