Model Question Paper 3 VECTOR ALGEBRA 3

11th Standard

Maths	Reg.No. :			

Answer all the Questions

Time: 02:30:00 Hrs

Part A

Total Marks: 100

8 x 1 = 8

1) The unit vector parallel to \vec{a} are

(a)
$$\hat{a} = \frac{\vec{a}}{|\vec{a}|}$$
 (b) $\pm |\vec{a}|$ (c) $\vec{a} = |\vec{a}|\hat{a}$ (d) $\pm (\hat{a})$

- 2) Which one of the following is Vector Quantity
 - (a) Work (b) Mass (c) Weight (d) none
- 3) The word Vector is
 - (a) German (b) American (c) Latin (d) Irish
- P and Q are two points with position vectors $3\vec{a} 2\vec{b}$ and $\vec{a} + \vec{b}$ respectively, then the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally is,
 - (a) $\vec{a} + 4\vec{b}$ (b) $\vec{a} 4\vec{b}$ (c) $-\vec{a} + 4\vec{b}$ (d) $-\vec{a} 4\vec{b}$
- 5) The direction cosines of the vector $-2\vec{i} + \vec{j} 5\vec{k}$

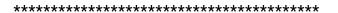
(a) -2,1,-5 (b)
$$\frac{-1}{\sqrt{30}}$$
, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$ (c) $\frac{-2}{\sqrt{30}}$, $\frac{1}{\sqrt{30}}$, $\frac{-5}{\sqrt{30}}$ (d) 2,-1,5

- 6) Classify the vector quantities from the following.
 - (i) time period (ii) distance
 - (iii) force (iv) velocity
 - (a) (i) and (ii) (b) (ii) and (iii) (c) (iii) and (iv) (d) (iv) and (i)
- 7) If $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$, $\vec{b} = 2\vec{i} \vec{j} \vec{k}$ then $|\vec{a} + \vec{b}|^2$
 - (a) 11 (b) $\sqrt{11}$ (c) -11 (d) $-\sqrt{11}$
- 8) If $\vec{a} = \vec{i} + 2\vec{j} + 2\vec{k}$, $\vec{b} = 2\vec{i} \vec{j} \vec{k}$ then $|\vec{a} \vec{b}|^2$ is
 - (a) $\sqrt{19}$ (b) 19 (c) -19 (d) $-\sqrt{19}$

10 x 2 = 20

- Show that the vectors $\vec{a} = 2\vec{b} + 3\vec{c}$, $\vec{a} = 3\vec{b} + 5\vec{c}$ and $-2\vec{a} + 3\vec{b} 4\vec{c}$ are coplanar where \vec{a} , \vec{b} , \vec{c} are non coplanar.
- 10) Prove that the medians of a triangle meet at a point.
- 11) Prove that the line segment joining the mid points of the two sides of a triangle is parallel to the third side and equal to half of it.

Part B


- 12) If the position vector \vec{a} of the point $(-4, \lambda, 3)$ be such that $|\vec{a}| = 13$ find λ .
- Show that the points whose position vectors are $-2i+3\vec{j}+5\vec{k}$, $\vec{i}+2j+3\vec{k}$ and $7i-\vec{k}$ are collinear.
- Show that the points whose position vectors are given by $-2i \vec{j} + \vec{k}$, $\vec{i} 3j 5\vec{k}$ and $3i 4\vec{j} 4\vec{k}$ from a right angled triangle.
- 16) $\xrightarrow{\rightarrow}$ $\xrightarrow{\rightarrow}$ $\xrightarrow{\rightarrow}$ $\xrightarrow{\rightarrow}$ If PO+OQ=QO+OR, show that the points P, Q, R are collinear.
- 17) $\rightarrow \rightarrow \rightarrow$ If D is the mid point of the side BC of a triangle ABC, prove that AB+AC=2AD.
- 18) L and M are midpoints od=f sides BC and DC of a parallelogram ABCD. prove that $AL + AM = \frac{3}{2}AC$

Part (

9 x 3 = 27

- 19) if \vec{a} and \vec{b} are any two vectors and m is a scalar then $m(\vec{a} + \vec{b}) = m\vec{a} m\vec{b}$
- 20) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow AB = OB OA where OA and OB are the PVs of A and B respectively.
- 21) Let A and B be two points with position vectors \vec{a} and \vec{b} respectively and let P be a point dividing AB internally in the ratio m: n. Then the position vector of P is given by $\overrightarrow{OP} = \frac{n\vec{a} + m\vec{b}}{m + n}$
- 22) Let \vec{a} and \vec{b} be two non-collinear vectors and \vec{r} be a vector coplanar with them. Then \vec{r} can be expressed uniquely as $\vec{r} = i\vec{a} + m\vec{b}$ where \vec{l} , m are scalars
- 23) If P is a point in a two dimensional plane which has coordinates (x, y) then $\overrightarrow{OP} = x\overrightarrow{i} + y\overrightarrow{j}$ where \overrightarrow{i} , \overrightarrow{j} are unit vectors along OX and OY respectively.
- 24) If \vec{a} , \vec{b} , \vec{c} are three given non-coplanar vectors then every vector \vec{r} space can be uniquely expressed as $\vec{a} = i\vec{a} + m\vec{b} + n\vec{c}$ for some scalars l, m and n
- 25) If a point P in space has coordinate (x, y, z) then its position vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ where \vec{i} , \vec{j} , \vec{k} are unit vectors along OX, OY and OZ respectively
- $2\vec{i}-\vec{j}+7\vec{k}$ என்ற வெக்டரின் எண்ணளவு மற்றும் திசைக் கொசைன்களை காண்க

- 28) \rightarrow Express \overrightarrow{AB} in terms of unit vectors \overrightarrow{i} and \overrightarrow{j} where the points are A(- 6, 3) and B(- 2, 5). Find also $|\overrightarrow{AB}|$
- ²⁹⁾ Find the magnitude and direction cosines of $2\vec{i}-\vec{j}+2\vec{k}$
- 30) Find the unit vector in the direction of $3\vec{i} + 4\vec{j} 12\vec{k}$
- 31) Find the sum of the vectors $\vec{i} \vec{j} + 2\vec{k}$ and $2\vec{i} + 3\vec{j} 4\vec{k}$ and also find the modulus of the sum.
- 32)
 If the position vectors of the two points A and B are $\vec{i} + 2\vec{j} 3\vec{k}$ and $2\vec{i} 4\vec{j} + \vec{k}$ respectively then find |AB|
- 33) Find the unit vectors parallel to the vector $-3\vec{i} + 4\vec{j}$
- 34) Find the vectors of magnitude 5 units, which are parallel to the vector $2\vec{i} \vec{j}$
- 35) Show that the points whose position vectors $2\vec{i}+3\vec{j}-5\vec{k}, 3\vec{i}+\vec{j}-2\vec{k}$ and $6\vec{i}-5\vec{j}+7\vec{k}$ are collinear.
- 36) If the position vectors $3\vec{i} 7\vec{j} 7\vec{k}$, $5\vec{i} + 4\vec{j} + 3\vec{k}$ of A and B are find AB and determine its magnitude and direction cosines.

