Elite Metric Higher Secondary School Half Yearly Question - 1 mark

12th Standard

Date: 14-Jan-19 Reg.No.: Maths Total Marks: 10 $10 \times 1 = 10$

Time: 00:10:00 Hrs

Answer All The Question

- 1) Rolle's theorem is applicable in the interval $-1 \le x \le 1$ for the function
 - (a) f(x)=|x| (b) $f(x)=x^2$ (c) $f(x)=2x^3+3$ (d) f(x)=x
- 2) One of the foci of the rectangular hyperbola xy=18 is
 - (a) (6,6) (b) (3,3) (c) (4,4) (d) (5,5)
- If the matrix $\begin{bmatrix} -1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5 \end{bmatrix}$ has in inverse then 3)
 - (a) k is any real number (b) k=-4 (c) k \neq -4 (d) k \neq 4
- 4) The two lines $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z}{1}$ and $\frac{x-2}{3} \frac{y-1}{-5} = \frac{z-1}{2}$ are
 - (a) parallel (b) intersecting (c) skew (d) perpendicular
- 5) If $z_n = cos(\frac{n\pi}{3}) + isin(\frac{n\pi}{3})$ then, $z_1z_2z_3...z_6$ is
 - (a) 1 (b) -1 (c) i (d) -i
- A random variable X has the probability distribution

X=x	0	1	2	3
P(X=x)	1/10	2/10	λ/10	4/10

Then the mean is

- (a) 1 (b) 2 (c) 3 (d) 4
- 7) The radius of a cylinder is increasing at the rate of 2cm/sec and its altitude is decreasing at the rate of 3cm/sec. The rate of change of volume when the radius and the altitude are respectively 3cm and 5 cm is?
 - (a) 23π (b) 33π (c) 43π (d) 53π
- 8) Which of the following is a contradiction?
 - (a) pvq (b) $p\Lambda q$ (c) $pv(\sim p)$ (d) $p\Lambda(\sim p)$
- 9) If $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ then (adj A)⁻¹ is $\text{(a) } \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix} \quad \text{(b) } \frac{1}{10} \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix} \quad \text{(c) } \frac{1}{10} \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \quad \text{(d) } 10 \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$
- 10) The least possible perimeter of a rectangle of area 100sq.units is
 - (a) 10 (b) 20 (c) 40 (d) 60