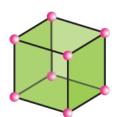
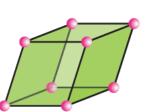
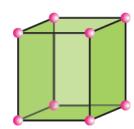

Primitive and non-primitive unit cell

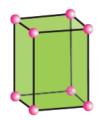

There are two types of unit cells: primitive and non-primitive. A unit cell that contains only one lattice point is called a primitive unit cell, which is made up from the lattice points at each of the corners.

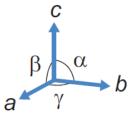
In case of non-primitive unit cells, there are additional lattice points, either on a face of the unit cell or within the unit cell.

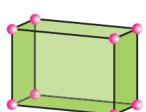


There are seven primitive crystal systems; cubic, tetragonal, orthorhombic, hexagonal, monoclinic, triclinic and rhombohedral. They differ in the arrangement of their crystallographic axes and angles. Corresponding to the above seven, Bravis defined 14 possible crystal systems as shown in the figure.

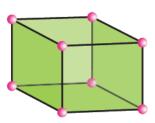

cubic	primitive	body centered	face centered
tetragonal	primitive	body centered	
hexagonal			
orthorhombic	primitive	body centered	face centered basis face centered
monoclinic	primitive		basis face centered
trigonal			
tric l inic			


Cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

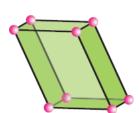

Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$



Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$



Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$



Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

 $\begin{aligned} & \text{Monoclinic} \\ & a \neq b \neq c \\ & \alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ} \end{aligned}$

Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$