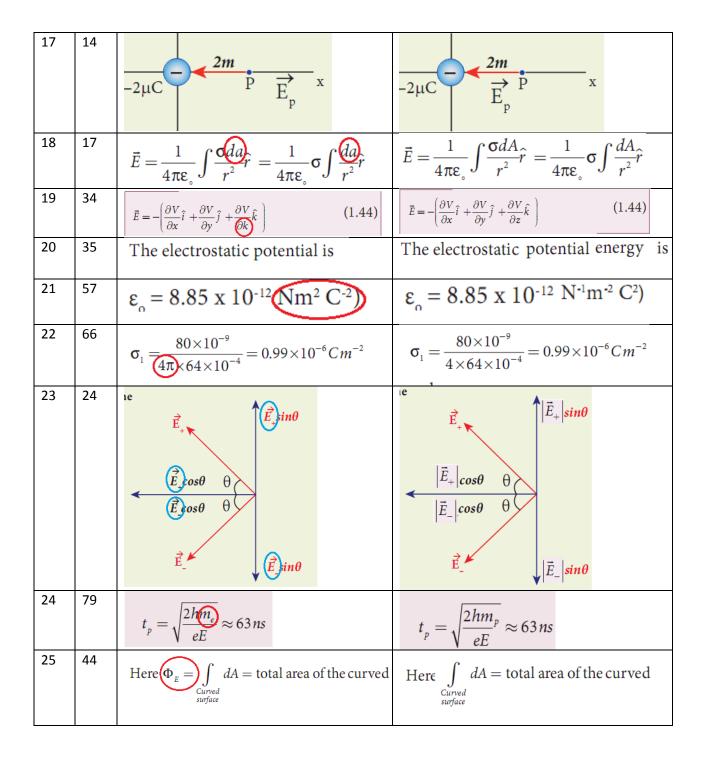
+2 Physics- Volume 1 (English medium)


Errata (as on 08-07-19)

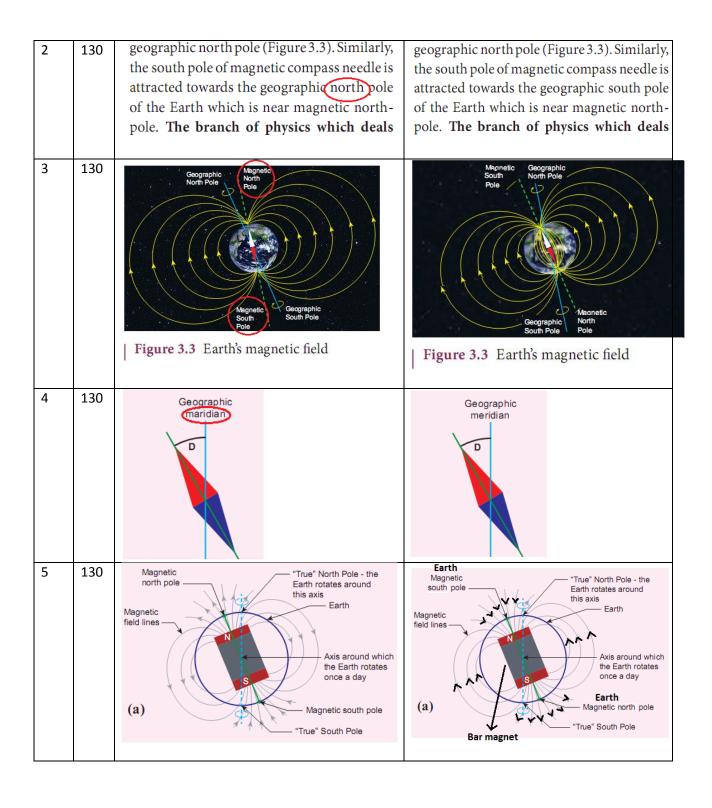
(Prepared by textbook authors team)

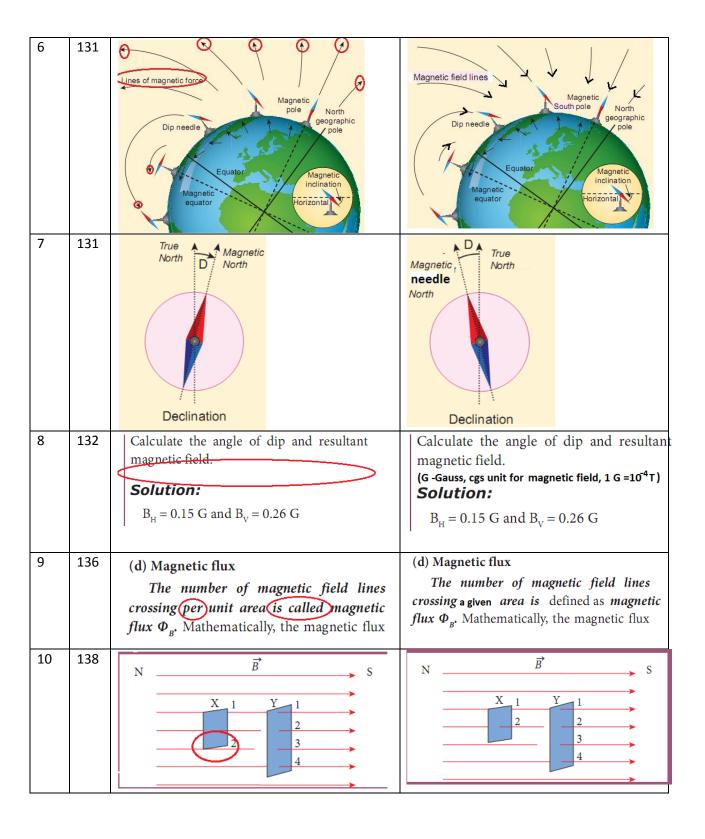
Unit 1(English medium)

S.N o	Pag e No	Error	Correction
1	7	Two small-sized identical equally charged spheres, each having mass 1 mg are hanging	Two small-sized identical equally charged spheres, each having mass 1g are hanging
2	9	$ + \frac{q_1 q_2}{r_{n1}^2} \hat{r}_{n1} $ (1.3)	$ + \frac{q_1 q_n}{r_{n_1}^2} \hat{r}_{n_1} $ (1.3)
3	16	$=-3.95\times10^{20}(\hat{i}+\hat{j})N$	$= -3.95 \times 10^{20} (\hat{i} + \hat{j}) N kg^{-1}$
4	19	Figure 1.13 Electric field has larger magnitude at surface A than B	Figure 1.13 Electric field has larger magnitude at surface A than B
5	29	(c) Calculate the work done to bring a test charge +2μC from infinity to the point P. Assume the charge +9μC	(c) Calculate the work done to bring a test charge +2μC from infinity to the poin Q. Assume the charge +9μC
6	30	(c) The electric potential V at a point Pdue to some charge is defined as the work done by an external force to bring a unit positive charge from infinity to PSo to bring the q amount of charge from infinity to the point work done is given as follows.	(c) The electric potential V at a point Odue to some charge is defined as the work done by an external force to bring a unit positive charge from infinity to So to bring the q amount of charge from infinity to the point work done is given as follows.

7	36	$W_{s} = -\frac{1}{4\pi\varepsilon_{\circ}} \frac{Q}{a} \left(2 - \frac{1}{\sqrt{2}}\right)$	$W_{\rm S} = -\frac{1}{4\pi\varepsilon_{\rm o}} \frac{q^2}{a} \left(2 - \frac{1}{\sqrt{2}}\right)$
8	40	$d\vec{A} = \frac{d\vec{A}}{d\vec{A}} \theta(> \frac{\pi}{2})$	$d\vec{A} \xrightarrow{(\theta > \frac{\pi}{2})} \vec{E}$
9	73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	74	(a) 10 J (b) – 20 J	(a) 10 V (b) - 20 V (c) +20 V (d) -10 V
4.4	7-	(c) +20 J (d) -10J	
11	75	1) b 2) c 3) d 4) b 5) a 6) b 7) c 8) a 9) b 10) b	1) b 2) c 3) d 4) b 5) a 6) b 7) c 8) a 9) c 10) b
12	77	Ans: $F_e = 9 \times 10^{61} \text{N}, W = 588 \text{ N}$	$F_e = 23 \times 10^{23} \text{ N, W} = 588 \text{ N,}$ $\frac{F_e}{W} = 3.9 \times 10^{21}$
13	78	Ans: $\Delta U = -3.246$ J, negative sign implies that to move the charge $-2\mu C$ no external work is required. System spends its stored energy to move the charge from point a to point b.	Ans: $\Delta U = +1.12$ J, Positive sign implies that to move the charge $-2\mu C$ external work is required.
14	79	(d) across PQ: $\frac{C_1C_2C_3 + C_2C_3C_4 + C_1C_2C_4 + C_1C_3C_4}{(C_1 + C_2)(C_3 + C_4)}$ across RS: $\frac{C_1C_2C_3 + C_2C_3C_4 + C_1C_2C_4 + C_1C_3C_4}{(C_1 + C_2)(C_3 + C_4)}$	(d) across PQ: $\frac{C_1C_2C_3 + C_2C_3C_4 + C_1C_2C_4 + C_1C_3C_4}{(C_1 + C_3)(C_2 + C_4)}$ across RS: $\frac{C_1C_2C_3 + C_2C_3C_4 + C_1C_2C_4 + C_1C_3C_4}{(C_1 + C_2)(C_3 + C_4)}$
	2	(iii) The charged amber rod attracts the	(iii) The charged rubber rod attracts the
15	2		

Unit 2 (English medium)

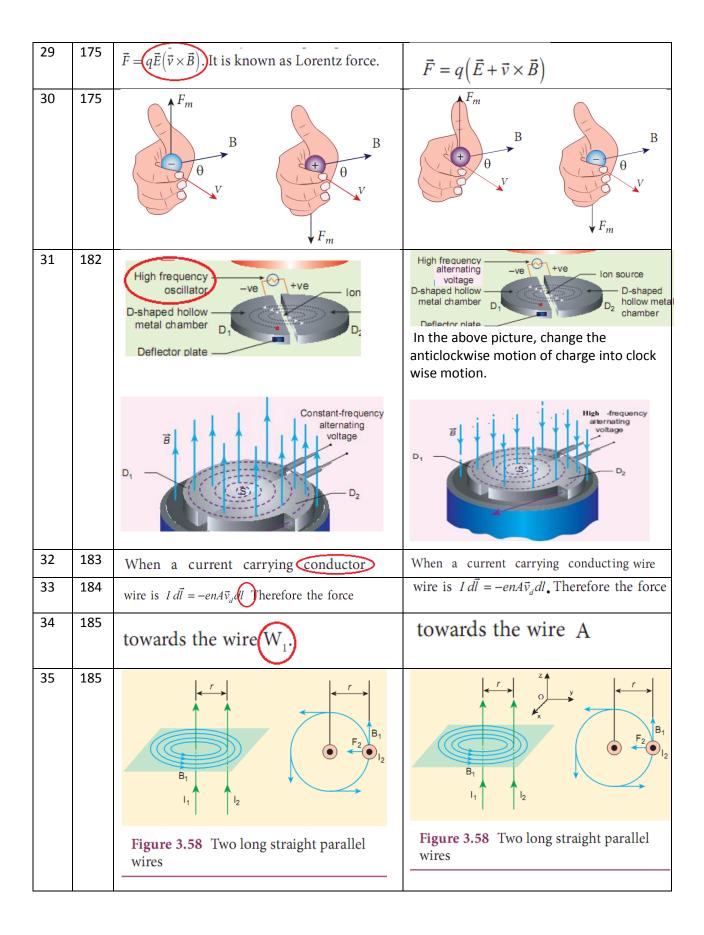

S.N	Pag	Error	Correction
0	е		
	No		

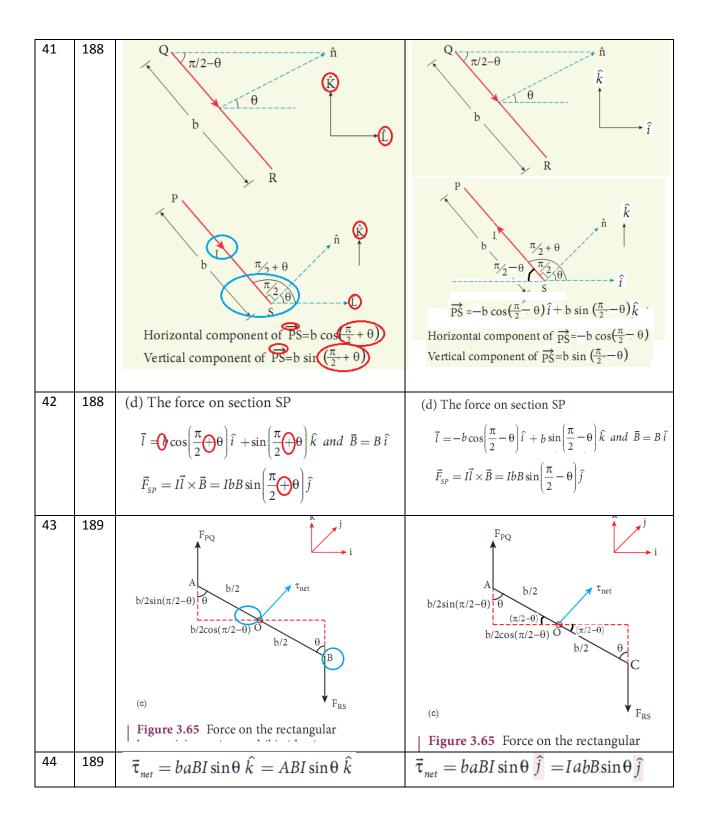

1.	100	$P = \frac{dV}{dt} = \frac{d}{dt}(V.dQ) = V\frac{dQ}{dt} $ (2.31)	$P = \frac{d\mathbf{W}}{dt} = \frac{d}{dt}(V.dQ) = V\frac{dQ}{dt} $ (2.31)
2	122	Answers 1) a	1) a 2) a 3) c 4) b 5) a
3	124	cm long. What is the resistivity of rod between its ends?	Resistance
4	124	Voltage $V_{A} = \frac{\xi}{20},$ $V_{B} = \frac{\xi}{30},$ $V_{C} = \frac{\xi}{30},$ $V_{C} = 0$	Voltage $V_{A} = \frac{\xi}{3}, \qquad V_{A} = \frac{\xi}{2},$ $V_{B} = \frac{\xi}{3}, \qquad V_{B} = \frac{\xi}{2},$ $V_{C} = \frac{\xi}{3}, \qquad V_{C} = 0$
5	115	60°C. (The specific heat of water is $s = 4200$ [kg ⁻¹]	60°C. (The specific heat of water is $s = 4200$ J kg ⁻¹ κ ⁻¹)
6	116	s = 4200 J kg ⁻¹ ,	$s = 4200 \text{ J kg}^{-1} \mathbf{K}^{-1}$
7	85	Figure 2.4 Electric current	Figure 2.4 Zig-zag motion and drift velocity
8	93	$V_2 = IR = 2.4 A \times 6\Omega = 14.4 V$	$V_2 = IR_2 = 2.4 A \times 6\Omega = 14.4 V$
9	108	0.2A 0.5A 0.7A mm	0.2A P 0.6A 0.5A 0.7A mm
10	118	Cu - + B Cooled Heated Fe (b)	A Cu - + B Cooled Fe (b)

11	124	6. Three identical lamps each having a resistance R are connected to the battery of emf as shown in the figure.	
12	122	 15. In Joule's heating law, when Dand t are constant, if the H is taken along the y axis and P along the x axis, the graph is a) straight line b) parabola c) circle d) ellipse 	 15. In Joule's heating law, when R and t are constant, if the H is taken along the y axis and I² along the x axis, the graph is a) straight line b) parabola c) circle d) ellipse
	94	$I_1 = \frac{V}{R_1} = \frac{24V}{6\Omega} = 6A$ $I_2 = \frac{V}{R_2} = \frac{24}{6} = 4A$	$I_1 = \frac{V}{R_1} = \frac{24V}{4\Omega} = 6A$ $I_2 = \frac{V}{R_2} = \frac{24}{6} = 4A$
13	95	$\begin{array}{c c} & & & & & & & & \\ & 1\Omega & & & & & & \\ \hline A & & & & & & & \\ & & & & & & \\ & & & &$	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
14	122	9. In a large building, there are 15 bulbs of 40W, 5 bulbs of 100W, 5 fans of 80W and 1 heater of 1kW are connected. The voltage of electric mains is 220V. The minimum capacity of the main fuse of the building will be (IIT-JEE 2014)	9. In a large building, there are 15 bulbs of 40W, 5 bulbs of 100W, 5 fans of 80W and 1 heater of 1kW are connected. The voltage of electric mains is 220V. The maximum capacity of the main fuse of the building will be (IIT-JEE 2014)
15	94	$R_{2} = \frac{56}{15}\Omega \tag{3}$	$R_2 = \frac{56}{R_1} \Omega \tag{3}$
16	116	current exceeds a certain value. Lead and copper wire melts and burns out when	current exceeds a certain value. Lead, Tin and copper wire melts and burns out when

Unit 3(English medium)

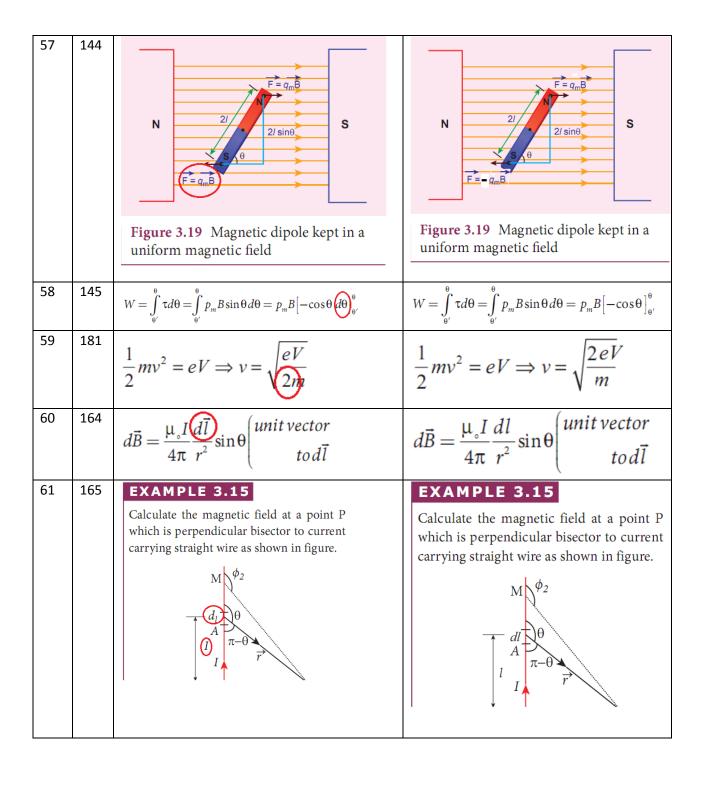
S.N	Pag	Error	Correction
0	е		
	No		
1	128	Magnetic induction at a point due to axial line as	nd Magnetic field

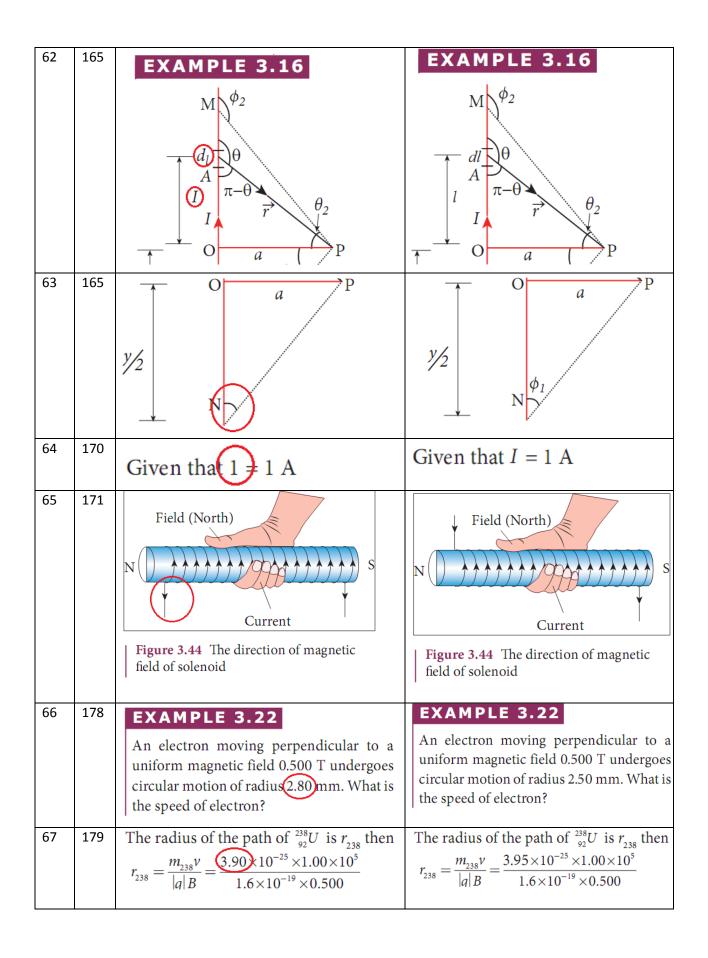



11	135	Cut in to two pieces	Cut in to two pieces
		S N q _m q _m	S N q _m q _m
12	136	2. The direction of magnetic field at any point on the curve is known by drawing tangent to the magnetic line of force at	Magnetic field lines
13	138	Here the integral is taken over area. Let X and Y be two planar strips whose orientation is such that the direction of area vector of planar strips is parallel to the direction of the magnetic	Let X and Y be two planar strips whose orientation is such that the direction of area vector of planar strips is
14	139	Figure 3.15 Coulomb's law – force between two magnetic pole strength	Figure 3.15 Coulomb's law – force between two magnetic pole
15	140	$\vec{F} \propto \frac{q_{m_A} q_{m_B}}{r^2} \hat{r}$	$\vec{F} \propto \frac{q_{m_A}q_{m_B}}{r^2} \hat{r}$
		where m _A and m _B	where q_{m_A} and q_{m_B}
16	140	$(q_m = 1 A m)$	$(q_{m_c} = 1 A m)$
17	142	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{N} B_{N} $Q_{m_{C}} = 1 \text{ Am}$ $P' = (r^{2} + l^{2})^{1/2}$ $P' = (r^{2} + l^{2})^{1/2}$

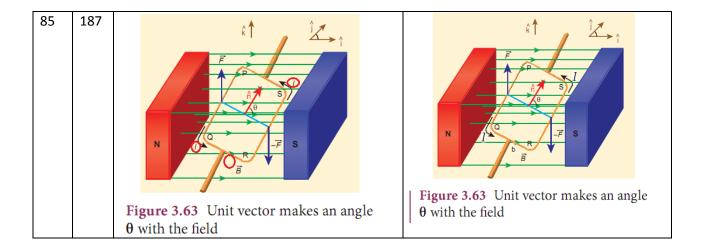
18	142	$\overrightarrow{F_N}$ $F_N cos \theta(-i)$ θ	$\overrightarrow{F_N}$ $\overrightarrow{F_N}$ $F_N sin \theta(j)$ $F_N cos \theta(-i)$ Θ
		$F_N cos\theta(i)$ θ $F_S sin\theta(f)$	$F_S cos\theta(-\hat{i})$ θ $F_S sin\theta(-\hat{j})$ $f_S sin\theta(-\hat{j})$
19	144	$T = 2\pi \sqrt{\frac{1}{p_m B}} \text{ in second,}$	$T = 2\pi \sqrt{\frac{I}{p_m B}} \text{ in second,}$
20	150	$\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o \vec{H} + \mu \vec{I}$ $\Rightarrow \vec{B} = \vec{B}_o + \vec{B}_m = \mu_o (\vec{H} + \vec{I}) $ (3.35)	$\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o \vec{H} + \mu_o \vec{M}$ $\Rightarrow \vec{B} = \vec{B}_o + \vec{B}_m = \mu_o (\vec{H} + \vec{M}) $ (3.35)
21	151	$ \frac{\text{Magnetic moment}}{Volume} = \frac{2}{25 \times 10^{-6}} $	$M = \frac{Magnetic moment}{Volume} = \frac{2}{25 \times 10^{-6}}$
22	157	AD-AG: residual magnetism AE-AK: coercivity Hysteresis loop for magnetic material	AD-AG: residual magnetism AE-AK: coercivity Hysteresis loop for magnetic material

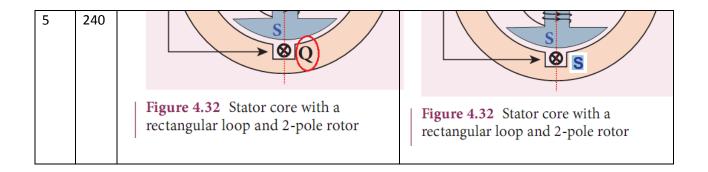
		B Flux density	B Flux density
		Coercivity Coercivity H Magnetising field E in opposits direction A Magnetising field in opposits direction Fux density B Hux density In opposits direction	Coercivity -H Magnetising field
23	163	is maximum and is given by $d\vec{B} = \frac{Id\vec{A}}{r^2}\hat{n}$	is maximum and is given by $d\vec{B} = \frac{\mu_{\circ}}{4\pi} \frac{I dl}{r^2} \hat{n}$
24	165	$\cos \varphi_{1} = \sqrt{\frac{\frac{y}{2}}{4 + a^{2}}} = adjacent length$ $ y y y y y y y y y y$	$\cos \varphi_1 = \frac{adjacent length}{hypotenuse length} = \frac{ON}{PN}$ $= \frac{\frac{y}{2}}{\sqrt{\frac{y^2}{4} + a^2}} = \frac{y}{\sqrt{y^2 + 4a^2}}$
25	166	$PC = PD = r = \sqrt{R^2 + Z^2}$	$PC = PD = r = \sqrt{R^2 + z^2}$
26	167	1 0	0
27	167	The magnetic field due to current in the upper hemisphere and lower hemisphere	Semicircle
28	169	Line integral means integral over a line or curve, symbol used is	Line integral means integral over a line or curve, symbol used is \(\int_c \)




36	186	Hence, the magnetic	Hence, the magnetic
		the wire is W ₁ s	the wire is A is
37	186	$ \begin{array}{c c} W_1 \\ i_1 \\ \hline F \\ r \end{array} $	$ \begin{array}{c c} A & & B \\ \hline I_1 & \bigcirc & I_2 \\ \hline F & & r \end{array} $
38	186	$\frac{\vec{F}}{l} = \frac{\mu_{\circ} I_{1} I_{2}}{2\pi r} \hat{j}$	$\frac{\vec{F}}{l} = \frac{\mu_{\circ} I_1 I_2}{2\pi r} \hat{j}$
39	188	When the loop starts rotating due to this torque, the magnetic field \vec{B} is no longer in the plane of the loop. So the above equation is the special case. When the loop starts rotating about z axis due to this torque, the magnetic field \vec{B} is no longer in the plane of the loop. So the above equation is the special case.	When the loop starts rotating about z axis due to this torque, the magnetic field \vec{B} is no longer in the plane of the loop. So the above equation is the special case.
40	188	$\vec{l} = b \cos\left(\frac{\pi}{2} - \theta\right) \vec{i} \cdot \sin\left(\frac{\pi}{2} - \theta\right) \vec{k} dn d\vec{B} = B(\vec{i})$	$\vec{l} = b\cos\left(\frac{\pi}{2} - \theta\right)\hat{i} - b\sin\left(\frac{\pi}{2} - \theta\right)\hat{k}$ and $\vec{B} = B\hat{i}$

45	189	$b = (\pi \circ) (\circ \circ b \circ (\pi \circ) \circ $	<u>h</u> (π) h (π
		$\overline{OA} = \frac{b}{2}\cos\left(\frac{\pi}{2} - \theta\right)\left(-\hat{i}\right) + \frac{b}{2}\sin\left(\frac{\pi}{2} - \theta\right)\left(-\hat{k}\right)$	$\overline{OA} = \frac{b}{2}\cos\left(\frac{\pi}{2} - \theta\right)\left(-\hat{i}\right) + \frac{b}{2}\sin\left(\frac{\pi}{2} - \theta\right)(\hat{k})$
		$=\frac{b}{2}\left(-\sin\theta\hat{i}+\cos\theta\hat{k}\right)$	$=\frac{b}{2}\left(-\sin\theta\;\hat{i}\;+\cos\theta\;\hat{k}\;\right)$
		$\widehat{OB} = \frac{b}{2}\cos\left(\frac{\pi}{2} - \theta\right)(\hat{i}) + \frac{b}{2}\sin\left(\frac{\pi}{2} - \theta\right)(-\hat{k})$	$\overline{O.C} = \frac{b}{2} \cos \left(\frac{\pi}{2} - \theta \right) (\hat{i}) + \frac{b}{2} \sin \left(\frac{\pi}{2} - \theta \right) (-\hat{k})$
		$= \frac{b}{2} \left(-\sin\theta \hat{i} \left(+ \cos\theta \hat{k} \right) \right)$	$=\frac{b}{2}\big(\sin\theta\;\hat{i}-\cos\theta\;\hat{k}\;\;\big)$
		$\overline{OA} \times \vec{F}_{PQ} = \left\{ \frac{b}{2} \left(-\sin\theta \hat{i} + \cos\theta \hat{k} \right) \right\} \times \left\{ IaB \hat{k} \right\}$	$\overline{OA} \times \vec{F}_{PQ} = \left\{ \frac{b}{2} \left(-\sin\theta \hat{i} + \cos\theta \hat{k} \right) \right\} \times \left\{ IaB \hat{k} \right\}$
		$=\frac{1}{2}IabB\sin\theta \ \hat{j}$	$=\frac{1}{2}IabB\sin\theta \ \hat{j}$
		$ \overline{OB} \times \overline{F}_{RS} = \left\{ \frac{b}{2} \left(\sin \theta \ \hat{i} \ \bigoplus \cos \theta \ \hat{k} \ \right) \right\} \times \left\{ -IaB \ \hat{k} \ \right\} $	$\overline{OC} \times \vec{F}_{RS} = \left\{ \frac{b}{2} \left(\sin \theta \hat{i} - \cos \theta \hat{k} \right) \right\} \times \left\{ -IaB \hat{k} \right\}$
		$=\frac{1}{2}IabB\sin\theta \ \hat{j}$	$=\frac{1}{2}IabB\sin\theta \ \hat{j}$
46	191	a fine suspension strip(W) a small plane	a fine suspension strip, a small plane
		mirror is attached in order to measure the	mirror is attached in order to measure the deflection of the coil with the help of lamp
		deflection of the coil with the help of lamp and scale arrangement. The other end of the	and scale arrangement. The other end of the
		mirror is connected to a torsion head In order to pass electric current through the	mirror is connected to a torsion head. In order to pass electric current through the
		galvanometer, the suspension strip wand	galvanometer, the suspension strip and
47	195	in Figure 3.74 The scale is now calibrated	Figure 3.70
48	200	(a) $\sqrt{\frac{2}{\sqrt{3}}}\beta Il$ (b) $\sqrt{\frac{1}{\sqrt{3}}}\beta Il$	(a) $\sqrt{\frac{2}{3}}\beta Il$ (b) $\sqrt{\frac{1}{3}}\beta Il$
		(c) $\sqrt{2} \beta Il$ (d) $\sqrt{\frac{1}{2}} \beta Il$	(c) $\sqrt{2} \beta I l$ (d) $\sqrt{\frac{1}{2}} \beta I l$
49	200	12	R →
		RRRR	
		P	R I I
		R	P


50	201	 15. A simple pendulum with charged bob is oscillating with time period T and let θ be the angular displacement. If the uniform magnetic field is switched ON in a direction perpendicular to the plane of oscillation then (a) time period will decrease but θ will remain constant (b) time period remain constant but θ will decrease (c) both T and θ will remain the same (d) both T and θ will decrease 	15.The potential energy of the magnetic dipole whose dipole moment is $\vec{p}_m = (-0.5~\hat{\imath} + 0.4~\hat{\jmath}~)~A~m^2~\text{kept in}$ uniform magnetic field $\vec{B} = 0.2~\hat{\imath}~T$ is $(a) -0.1~J~~(b) -0.8~J~~(c)~0.1~J~~(d)~0.8~J$
51	202	2. Deduce the relation for the magnetic induction at a point due to an infinitely	Magnetic field
52	202	 3. Obtain a relation for the magnetic induction at a point along the axis of a 5. Calculate the magnetic induction at a 6. Obtain the magnetic induction at a 7. Find the magnetic induction due to a 	Magnetic field
53	202	1. A bar magnet having a magnetic moment \overline{M} is cut into four pieces i.e., first cut in two pieces along the axis of the magnet and each piece is further cut into two pieces. Compute the magnetic moment of each piece. Answer $\overline{M}_{new} = \frac{1}{4}\overline{M}$	1. A bar magnet having a magnetic moment \vec{p}_m is cut into four pieces i.e., first cut in two pieces along the axis of the magnet and each piece is further cut into two pieces. Compute the magnetic moment of each piece. Answer $\vec{P}_{m_{new}} = \frac{1}{4} \vec{P}_m$
54	165	$\cos \Phi_2 = \frac{adjacent length}{hypotenuse length} = \frac{OM}{PM}$	$\cos(\pi - \phi_2) = \frac{adjacent length}{hypotenuse length} = \frac{OM}{PM}$ $\cos\phi_2 = -\frac{OM}{PM}$
55	167	$\vec{B} = \frac{\mu_{\circ} I}{2\pi} \frac{R^2}{\left(R^2 + Z^2\right)^{\frac{3}{2}}} \hat{k} $ (3.40)	$\vec{B} = \frac{\mu_{\circ} I}{2} \frac{R^2}{\left(R^2 + Z^2\right)^{\frac{3}{2}}} \hat{k} $ (3.40)
56	166	angle $\angle CPO = \angle DPO \neq \emptyset$	angle $\angle CPO = \angle DPO = \frac{90^{\circ} - \theta}{}$


68	183	I = neAvd (3.64)	$I = neAV_{d} $ (3.64)
69	183	F _B × × × × × × × × × × × × × × × ×	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
70	185	$(\vec{l}\vec{F}) = (I_2 d\vec{l} \times \vec{B}_1) = -I_2 dl \frac{\mu_{\circ} I_1}{2\pi r} (\hat{k} \times \hat{i})$	$\vec{F} = \left(I_2 d\vec{l} \times \vec{B}_1\right) = -I_2 dl \frac{\mu_{\circ} I_1}{2\pi r} (\hat{k} \times \hat{i})$
71	170	$\vec{B} 2\pi r = \mu_{\circ} I$	$B \cdot 2\pi r = \mu_{\circ} I$
72	171	points out Description De	points out Description De
73	174	$\oint_{loop2} \vec{B}_{s} \cdot \vec{dl} = \oint_{loop2} B dl \cos \theta = B 2\pi r_{2}$	$\oint_{loop2} \vec{B}_s \cdot \vec{dl} = \oint_{loop2} B_s \cdot dl \cos \theta = B_s 2\pi r_2$
74	191	the sides QR and SP are always parallel to to the B-field (magnetic field) and experience no force. The sides PQ and RS are always parallel to the B-field and experience force	the sides QR and SP are always parallel to the B-field (magnetic field) and experience no force. The sides PQ and RS are always perpendicular to the B-field and experience force
75	201	11(b) 12) c 13) b 14) d	11) c 12) c 13) b 14) d
76	194	Since, the shunt resistance is a very low resistance and the ratio $\frac{S}{R_g}$ is also small. This means, R_g is also small, i.e., the resistance	Since, the shunt resistance is a very low resistance and the ratio $\frac{S}{R_g}$ is also small. This means, R_a is also small, i.e., the resistance

77	185	In the same manner, we compute the magnitude of net magnetic induction due to current I _a (in conductor A) at a distance r in	In the same manner, we compute the net magnetic induction due to current I (in conductor A) at a distance r in
78	184	Hence Lorentz force on the wire of length dl is the product of the number of the electrons (N = nA dl) and the force acting on an electron.	Hence Lorentz force on the wire of length dl is the product of the number of the electrons (N = nA dl) and the force acting on each electron.
79	175	 7) The direction of \$\vec{F}_m\$ on negative charge is opposite to the direction of \$\vec{F}_m\$ on positive charge provided other factors are identical as shown Figure 3.49 8) If velocity \$\vec{v}\$ of the charge q is along magnetic field \$\vec{B}\$ then, \$\vec{F}_m\$ is zero 	 6. The direction of \$\vec{F}_m\$ on negative charge is opposite to the direction of \$\vec{F}_m\$ on positive charge provided other factors are identical as shown Figure 3.49 7. If velocity \$\vec{v}\$ of the charge q is along magnetic field \$\vec{B}\$ then, \$\vec{F}_m\$ is zero
80	194	to zero. Hence the reading in ammeter is always lesser than the actual current in the	to zero. But in reality, the reading in ammeter is always lesser than the actual current in the
81	194	$\frac{\Delta I}{I} \times 100\% = \frac{I_{ideal} - I_{actual}}{I_{actual}} \times 100\%$	$\frac{\Delta I}{I} \times 100\% = \frac{I_{ideal} - I_{actual}}{\underline{I_{ideal}}} \times 100\%$
82	190	$\vec{\tau}_{\rm net} = \vec{p} \times \vec{E}$ which is given in the Unit 1. (Section 1.4.3)	$\vec{\tau}_{\rm net} = \vec{p} \times \vec{E} \ \ {\rm which \ is \ given \ in \ the \ Unit \ 1.}$ (Section 1.4.3) and also in unit 3(section 3.3) $\vec{\tau}_{\rm net} = \vec{p}_m \times \vec{B}$
83	164	$dl = a \cos ec^{2}\theta d\theta$ $d\vec{B} = \frac{\mu_{o}I}{4\pi} \frac{\left(a \csc^{2}\theta d\theta\right)}{\left(a \csc^{2}\theta d\theta\right)} \sin \theta d\theta \hat{n}$ $d\vec{B} = \frac{\mu_{o}I}{4\pi} \frac{\left(a \csc^{2}\theta d\theta\right)}{a^{2} \csc^{2}\theta} \sin \theta d\theta \hat{n}$ $= \frac{\mu_{o}I}{4\pi a} \sin \theta d\theta \hat{n}$	$dl = a \cos ec^{2}\theta d\theta$ $d\vec{B} = \frac{\mu \cdot I}{4\pi} \frac{\left(a \csc^{2}\theta \ d\theta\right)}{\left(a \csc^{2}\theta \ d\theta\right)} \sin \theta \ \hat{n}$ $d\vec{B} = \frac{\mu \cdot I}{4\pi} \frac{\left(a \csc^{2}\theta \ d\theta\right)}{a^{2} \csc^{2}\theta} \sin \theta \ \hat{n}$ $= \frac{\mu \cdot I}{4\pi a} \sin \theta d\theta \hat{n}$
84	165	Hence, $\vec{B} = \frac{\mu_{\circ}I}{4\pi a} \frac{2y}{\sqrt{y^2 + 4a^2}} \hat{n}$	Using the equation $\vec{B}=\frac{\mu_{\circ}I}{4\pi a}(\cos\phi_{1}-\cos\phi_{2})\hat{n}$ We get $\vec{B}=\frac{\mu_{\circ}I}{4\pi a}\frac{2y}{\sqrt{y^{2}+4a^{2}}}\hat{n}$

Unit 4(English medium)

S.N	P.N	Error	Correction
0	0		
1	264	$= V_m \mathbf{I}_m \sin \omega t \left[\sin \omega t \cos \phi - \cos \omega t \sin \phi \right]$	$= V_m \mathbf{I}_m \sin \omega t \left[\sin \omega t \cos \phi + \cos \omega t \sin \phi \right]$
		$P = V_m I_m \left[\cos \phi \sin^2 \omega t - \sin \omega t \cos \omega t \sin \phi \right] $ (4.61)	$P = V_m I_m \left[\cos \phi \sin^2 \omega t + \sin \omega t \cos \omega t \sin \phi \right] $ (4.61)
2	279	is 0.04 m. Find the magnetic flux of a turn when it carries a current of 1 A. (Ans: 1.26 W)	is 0.04 m. Find the magnetic flux of a turn when it carries a current of 1 A. (Ans: 0.63x10 ⁻⁴ Wb)
3	280	in 0.04 second. Calculate the induced emf in solenoid 2. (Ans: 1.81H 271.5 V)	in 0.04 second. Calculate the induced emf in solenoid 2. (Ans: 1.81H; -271.5 V)
4	280	Magnetic flux b c d time	Magnetic flux b c d time

Unit 5(English medium)

S.N	P.N	Error	correction
0	0		
1	285	$ \oint_{l} \vec{B} \cdot \vec{dl} = -\frac{\partial}{\partial t} \Phi_{E} = -\frac{\partial}{\partial t} \oint_{S} (\vec{B} \cdot \vec{dS}) (5.2) $ $ \oint_{l} (\vec{E} \cdot \vec{dl}) = -\frac{\partial}{\partial t} \Phi_{E} = -\frac{\partial}{\partial t} \oint_{S} (\vec{B} \cdot \vec{dS}) (5.2) $	$ \oint_{l} \vec{B} \cdot d\vec{l} = -\frac{\partial}{\partial t} \Phi_{E} = -\frac{\partial}{\partial t} \oint_{S} \vec{E} \cdot d\vec{A} \qquad (5.2) $ $ \oint_{l} \vec{B} \cdot d\vec{l} = -\frac{\partial}{\partial t} \Phi_{E} = -\frac{\partial}{\partial t} \oint_{S} \vec{E} \cdot d\vec{A} $
2	285	$ \oint \vec{B} \cdot d\vec{l} = \mu_0 I_C $ (5.4)	$\oint_{l} \vec{B} \cdot d\vec{l} = \mu_{\circ} I(t) $ (5.3)
3	285	the net current I threading through the	Passing
4	286	$\Phi_E = \underbrace{\vec{E} \cdot d\vec{A}} = EA = \frac{q}{\varepsilon_0}$	$\Phi_{E} = \oint_{s} \vec{E} \cdot d\vec{A} = EA = \frac{q}{\varepsilon_{0}}$
5	286	$\oint \vec{B} \cdot d\vec{S} = \mu_{\circ} I = \mu_{\circ} (I_C + I_d) $ (5.6)	$ \oint \vec{B}.\vec{dl} = \mu_{\circ}I = \mu_{\circ}(I_C + I_d) \tag{5.6} $
6	292	Hz. Itobeys reflection and polarization.	Hz. It shows reflection and polarization.
7	293	give the wavelength of microwave.	give the half wavelength of microwave.
8	297	Maxwell modified Ampere's law as $\oint \vec{B} \cdot \vec{dS} = \mu_o I = \mu_o (I_c + I_d)$	Maxwell modified Ampere's law as $ \oint \vec{B} \cdot d\vec{l} = \mu_{\circ} I = \mu_{\circ} (I_{C} + I_{d}) $

9	299	(b) $\oint \vec{E} \cdot d\vec{A} = 0$	(b) $\oint \vec{B} \cdot d\vec{A} = 0$
		$(c) \oint \vec{E} \cdot d\vec{A} = \mu_{\circ} I_{enclosed} + \mu_{\circ} \in_{\circ} \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$	(c) $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enclosed} + \mu_0 \varepsilon_0 \frac{d}{dt} \int_s \vec{E} \cdot d\vec{A}$
10	300	$E = E_o \sin[10^6 (x) - \omega t]$	$E = E_o \sin[10^6 x - \omega t]$
11	301	Answer: 18.84×10^{-6} m	Answer: 18.84×10^2 m
12	301	Answer: $\lambda = 3 \times 0^{-18}$ m and	Answer: $\lambda = 3 \times 10^{-2}$ m and
		$\vec{E}(x,t) = 3 \times 10^3 \sin(2.09 \times (0^{18}) x - 6.28 \times 10^{10} t) \hat{i} \ NC^{-1}$	$\vec{E}(x,t) = 3 \times 10^3 \sin(2.09 \times 10^2 x - 6.28 \times 10^{10} t) \hat{i} \ N C^{-1}$
13	301	Answer: $v = 2 \text{ m s}^{-1}$	Answer: $v = 2 \times 10^{18} \text{m s}^{-1}$
14	299	4. Which of the following are false	4. Which of the following are false
		for electromagnetic waves	for electromagnetic waves
		(a) transverse	(a) transverse
		(b) mechanical waves	(b) non- mechanical waves
		(c) longitudinal	(c) longitudinal
		(d) produced by accelerating cha	(d) produced by accelerating cha