Model Question Paper 1 Dynamics of Rotational Motion 1

11th Standard

	Physics Reg.No.:	
Ans	wer all the Questions	_
Tim	e : 00:45:00 Hrs Total Marks :	.30
	Part A 5x1:	= 5
1)	The angular speed of minute arm in a watch is	
	(a) $\pi/21600$ rad s^{-1} (b) $\pi/12$ rad s^{-1} (c) $\pi/3600$ rad s^{-1} (d) $\pi/1800$ rad s^{-1}	
2)	The moment of inertia of a body comes into play	
	(a) in linear motion (b) in rotational motion (c) in projectile motion (d) in periodic motion	
3)	Rotational analogue of mass in linear motion is	
	(a) weight (b) moment of inertia (c) torque (d) angular momentum	
4)	The moment of inertia of a body does not depend on	
	(a) the angular velocity of the body (b) the mass of the body (c) the axis of rotation of the body (d) the distribution of mass in the body	
5)	a ring of radius r and mass m rotates about an axis passing through its centre and perpendicular to its plane with angular velocity ω . Its kinetic energy is	
	(a) m r ω^2 (b) ${1\over 2}mr\omega^2$ (c) $I\omega^2$ (d) ${1\over 2}I\omega^2$	
	Part B 3x2:	= 6
6)	Obtain an expression for position of centre of mass of two particle system.	
7)	Explain the motion of centre of mass of a system with an example.	
8)	What are the different types of equilibrium?	
	Part C 3x3:	= 9
9)	A person weighing 45 kg sits on one end of a seasaw while a boy of 15 kg sits on the other end. If they are separated by 4 m, how far from the boy is the center of mass situated.	
	Neglect weight of the seasaw.	
10)	Four bodies of masses 1 kg, 2 kg, 3 kg, and 4 kg are at the vertices of a rectangle of sides a and b. If a=1m, and b=2m, find the location of the center of mass. (Assume that, 1 kg	
	mass is at the origin of the system, 2 kg body is <mark>situated along the positive x-axis and 4 kg along the y-axis</mark>)	
11)	Assuming a dumbbell shape for the carbon monoxide(CO) molecule, find the distance of the center of mass of the molecule from the carbon atom in terms of the distance d	
	between the carbon and the oxygen atom. The atomic mass of Carbon is 12 amu and for oxygen is 16 amu (1 amu = $1.67 imes 10^{-27} kg$)	
	Part D 2x5=	10
12)	Three bodies of masses 2 kg, 4 kg, and 6 kg are located at the vertices of an equilateral triangle of side 0.5 m. Find the center of mass of this collection, giving its coordinates in	
	terms of a system with its origin at the 2 kg <mark>body and with</mark> the 4 kg <mark>body loc</mark> ated along the p <mark>ositive</mark> X axis.	
13)	A solid sphere of mass 50 g and diameter 2 cm rolls without sliding with a uniform velocity of 5 m s ⁻¹ along a straight line on a smooth horizontal table. Calculate its total kinetic	:
	energy. (Note: Total $E_K=rac{1}{2}mv^2+rac{1}{2}I\omega^2$)	
