## **QB365 QUESTION BANK SOFTWARE**

#### **QB365 MODEL HALF YEARLY QUESTION WITH ANSWER KEY 2024**

8th Standard

Maths

Total Marks: 100

Time: 03:00:00 Hrs

 $5 \times 1 = 5$ I. CHOOSE THE CORRECT ANSWER 1)  $\sqrt{128} - \sqrt{98} + \sqrt{18} =$ (a)  $\sqrt{2}$  (b)  $\sqrt{8}$  (c)  $\sqrt{48}$  (d)  $\sqrt{32}$ 2) If the area of a square is  $36x^4y^2$  then, its side is\_\_\_\_\_ (a)  $6x^4y^2$  (b)  $8x^2y^2$  (c)  $6x^2y^2$  (d)  $6x^2y$ 3) If  $x^2 - y^2 = 16$  and (x + y) = 8 then (x - y) is \_\_\_\_\_ (a) 8 (b) 3 (c) 2 (d) 1 4) The area of a rectangle of length 21 cm and diagonal 29 cm is \_\_\_\_\_cm<sup>2</sup>. (a) 609 (b) 580 (c) 420 (d) 210 5) Common prime factors of 30 and 250 are (b)  $3 \times 5$  (c)  $2 \times 3 \times 5$  (d)  $5 \times 5$ (a)  $2 \times 5$ 6) The sum which amounts to Rs.2662 at 10% p.a in 3 years compounded yearly is\_\_\_\_\_. (b) Rs.1800 (c) Rs.1500 (a) Rs.2000 (d) Rs.2500 7) Sum of a number and its half is 30 then the number is\_\_\_\_\_. (a) 15 (b) 20 (c) 25 (d) 40 II. FILL IN THE BLANKS:  $5 \times 1 = 5$ 8) The number of perfect square numbers between 300 and 500 is\_\_\_\_\_ 5 9) (-2)<sup>-7</sup>= \_\_\_\_\_ 1/128 10) The radius of a circle of diameter 24 cm is \_\_\_\_\_.

(4,-4)

12 cm

12) If the sides of a triangle are in the ratio 5: 12: 13 then, it is \_\_\_\_\_.

11) The intersecting point of the line x = 4 and y = -4 is\_\_\_\_\_.

## right angled triangle

13) The compound interest on Rs.5000 at 12% p.a for 2 years compounded annually is \_\_\_\_\_\_.

### **1272**

14) A alone can do a piece of work in 35 days. If B is 40% more efficient than A, then B will finish the work in \_\_\_\_\_days.

## III. SOLVE ANY 15 OF THE FOLLOWING:

16) Simplify:  $(3^2)^3 \times (2 \times 3^5)^{-2} \times (18)^2$ 

**Answer:**  $(3^2)^3 \times (2 \times 3^5)^{-2} \times (2 \times 3 \times 3)^2$ 

- $= 36 \times 2^{-2} \times 3^{-10} \times (2 \times 3^{2})^{2}$
- $= 36 \times 2^{-2} \times 3^{-10} \times 2^{2} \times 3^{4}$
- $= 2^2 \times 2^{-2} \times 3^6 \times 3^4 \times 3^{-10}$
- $= 2^{2-2} \times 3^{6+4-10}$
- $= 2^0 \times 3^0$
- $= 1 \times 1 = 1$

17) Solve for x

$$rac{5^{5} imes5^{-4} imes5^{x}}{5^{12}}=5^{-5}$$

Answer:  $\frac{5^5 \times 5^{-4} \times 5^x}{5^{12}} = 5^{-5}$ 

 $5^5 imes 5^{-4} imes 5^x imes 5^{-12} = 5^{-5}$ 

$$5^{5-4-12+x} = 5^{-5}$$

$$5^{-11+x} = 5^{-5}$$

The bases are equal

Equate the exponents

$$-11 + x = -5$$

$$x = -5 + 11 = 6$$

$$x = 6$$

18) Find x: (i) -3(4x + 9) = 21 (ii) 20 - 2(5 - p) = 8 (iii) (7x - 5) - 4(2 + 5x) = 10(2 - x)

**Answer:** (i) x = -4

(ii) 
$$p = -1$$

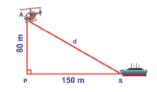
(iii) 
$$x = -11$$

19) The sum of three consecutive odd numbers is 75. Find the numbers.

Answer: 27

20) At present, Thenmozhi's age is 5 years more than that of Murali's age. Five years ago, the ratio of Thenmozhi's age to Murali's age was 3:2. Find their present ages.

 $12 \times 2 = 24$ 


Answer: Murali's age is 15 years old, Thenmozhi's age is 20 years old

21) Find the quadrants without plotting the points on a graph sheet.

(-7,2), (8,0), (0,10), (-9,50).

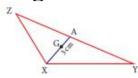
**Answer:** (3, - 4) lies in the IV quadrant

- (5, 7) lies in the I quadrant
- (2,0) lies on the X axis
- (-3, -5) lies in the III quadrant
- (4, 3) lies in the IV quadrant
- (-7,2) lies in the II quadrant
- (-8,0) lies on the X axis
- (0, 10) lies on the Y axis
- (-9, 50) lies in the II quadrant
- 22) Find the distance between the helicopter and the ship.



**Answer:** From the figure

$$d^2 = 80^2 + 150^2$$


$$= 6400 + 22500$$

$$d^2 = 28900$$

$$d = 170$$

The distance between the helicopter and the ship is 170 m.

23) In the given figure, A is the midpoint of YZ and G is the centroid of the triangle XYZ. If the length of GA is 3 cm, find XA.



**Answer:** Since G is the centroid of the triangle XYZ

$$So, XG : GA = 2 : 1$$

$$rac{ ext{XG}}{ ext{GA}} = rac{2}{1} \ rac{ ext{XG}}{3} = rac{2}{1} ( ext{ given GA} = 3)$$

$$XG = 6$$

$$XA = XG + GA$$

$$= 6 + 3 = 9$$
cm

24) Write in scientific notation:

- (i) 1642.398
- (ii) 0.0123

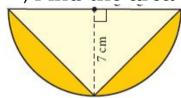
**Answer:** (i) Scientific notation,  $1.083 \times 1012$  cubic km.

- (ii) Scientific notation  $1.6 \times 10^{-24}$  kg.
- 25) State Pythagoras theorem.

**Answer:** 535.71 cm<sup>2</sup>

26) Find the length of the arc whose central angle is 45<sup>0</sup> and radius is 16 cm.

**Answer:** Length of arc =  $rac{ heta^o}{360^o} imes 2\pi r$  units


Given central angle  $\theta = 60^{\circ}$ 

Radius of the sector r = 42 cm

$$1 = \frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 42 \text{ cm} = 44 \text{ cm}$$

∴ Length of the arc = 44 cm

27) Find the area of the shaded part in the following figures. (  $\pi$  = 3.14 )



**Answer:** From the figure, radius = 7 cm

diameter = 14 cm

Area of the shaded part = Area of the semicircle - Area of the triangle

$$=rac{1}{2}\pi r^2-rac{1}{2}bh$$

$$=rac{1}{2}3.14 imes 7 imes 7-rac{1}{2} imes 14 imes 7$$

$$= 76.93 - 49 = 27.93 \text{ cm}^2$$

28) Find the area of a sector whose length of the arc is 48 m and radius is 10 m.

**Answer:** Length of the arc of the sector 1 = 50 mm

Radius r = 14mm

Area of the sector =  $\frac{lr}{2}$  sq. units

$$=\frac{50\times14}{2}$$
 mm<sup>2</sup> = 50 x 7 mm<sup>2</sup> = 350 mm<sup>2</sup>

Area of the sector =  $350 \text{mm}^2$ 

29) Expand (2n - 1)(2n + 3)

**Answer:** 
$$(x + a)(x + b) = x^2(a + b)x + ab$$
  
 $(2n + (-1)(2n + 3) = (2n)^2 + (-1 + 3)2n + (-1)(3)$   
 $= 2^2n^2 + 2(2n) - 3 = 4n^2 + 4n - 3$ 

30) Factorise:  $c^2 - 4c - 12$ 

#### Answer:

| Product                                                               | Sum |  |  |  |  |
|-----------------------------------------------------------------------|-----|--|--|--|--|
| -4                                                                    | -12 |  |  |  |  |
| -6 + 2                                                                | , , |  |  |  |  |
| $\therefore$ c <sup>2</sup> - 4c - 12 = c <sup>2</sup> + 2 c- 6 c- 12 |     |  |  |  |  |
| = c(c - 6) + 2(c - 6)                                                 |     |  |  |  |  |
| = (c + 2)(c - 6)                                                      |     |  |  |  |  |

31) Find the compound interest on Rs. 3200 at 2.5% p.a for 2 years, compounded annually.

**Answer :** P = Rs. 3200, r = 2.5% n = 2 years C.I = 
$$P(1 + \frac{r}{100})^n - P$$
 =  $3200(1 + \frac{2.5}{100})^2 - 3200$  =  $3200(\frac{102.5}{100})^2 - 3200$  =  $32 \times \frac{1025}{100} \times \frac{1025}{100} - 3200$  =  $32 \times \frac{41}{4} \times \frac{41}{4} - 3200$  =  $2 \times 41 \times 41 - 3200$  =  $3362 - 3200$  =  $162$ 

32) A and B together can do a piece of work in 16 days. A alone can do it 48 days. How long will B take to complete the work?

**Answer:** (A + C)'s 1 day work = 
$$\frac{1}{6}$$

A's 1 day work = 
$$\frac{1}{12}$$

C's 1 day work =  $\frac{1}{6} - \frac{1}{12} = \frac{2-1}{12} = \frac{1}{12}$ 

(B + C)'s 1 day work =  $\frac{1}{3}$ 

B's Iday work = 
$$\frac{1}{3} - \frac{1}{12} = \frac{4-1}{12} = \frac{3}{12} = \frac{1}{4}$$

B alone can complete the work in 4 hours.

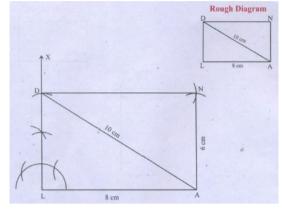
33) A is thrice as fast as B. If B can do a piece of work in 24 days, then find the number of days they will take to complete the work together

**Answer:** A is thrice as fast as B.

B takes 24 days to finish the work

 $\therefore$  A takes  $\frac{1}{3} \times 24 = 8$  days to finish the work.

A's 1 day's work  $=\frac{1}{8}$ B's 1 day's work  $=\frac{1}{24}$ 


∴ 
$$(A + B)$$
 's 1 day's work  $= \frac{1}{8} + \frac{1}{24}$   
 $= \frac{3+1}{8}$ 

$$= \frac{3+1}{24} \\ = \frac{4}{24} = \frac{1}{6}$$

Both A and B will take 6 days to complete the work together

34) Check whether the given sides are sides of a right angled triangle using Pythagoras theorem. 12, 13, 15





STEPS:

(i) Draw a line segment LA = 8 cm.

(ii) At L, Construct LD  $\perp$  LA

(iii) With A as centre, draw an arc of radius 10 cm and let it cut LX at D..

(iv) With A as centre and 6 cm as radius draw an arc. Also with D as centre 8 cm as radius draw another arc let them cut at N.

(v) Join DN and AN.

(vi) LAND is the required rectangle

Calculation of area

Area of rectangle HAND =  $I \times b$  sq units.

 $= 8 \times 6 = 48 \text{ cm}^2$ .

#### IV. SOLVE ANY 8 OF THE FOLLOWING:

 $2 \times 3 = 6$ 

35) Find the square root by prime factorisation method

- (i) 1156
- (ii) 4761
- (iii) 9025

# Answer:

$$\sqrt{1156} = 2 \times 2 \times 17 \times 17$$

$$= 2^{2} \times 17^{2}$$

$$= (2 \times 17)^{2}$$

$$\sqrt{1156} = \sqrt{(2 \times 17)^{2}}$$

$$= 2 \times 17$$

$$= 34$$

$$\sqrt{1156} = 34$$
(ii) 4761
$$\frac{3}{3} \frac{4761}{1587}$$

$$\frac{3}{23} \frac{4761}{529}$$

$$\frac{3}{23} \frac{4761}{1587}$$

$$\sqrt{4701} = 3 \times 3 \times 23 \times 23$$

$$= 3^2 \times 23^2$$

$$\sqrt{4761} = \sqrt{(3 imes 23)^2}$$

$$= 3 \times 23$$

$$\sqrt{4761} = 69$$

$$\sqrt{9025} = 5 \times 5 \times 19 \times 19$$
  
=  $5^2 \times 19^2$ 

$$= (5 \times 19)^2$$

$$\sqrt{9025}=\sqrt{\left(5 imes19
ight)^2}$$

$$= 5 \times 19$$

$$\sqrt{9025} = 95$$

V. GEOMETRY  $7 \times 5 = 35$ 

36) Verify the associative property for addition and multiplication of the rational numbers  $\frac{-7}{9}, \frac{5}{6}, \frac{-4}{3}$ 

**Answer:** Let  $a = \frac{-10}{11}$ ,  $b = \frac{5}{6}$  and  $c = \frac{-4}{3}$  be the given rational numbers

$$(a+b)+c=\left(rac{-10}{11}+rac{5}{6}
ight)+\left(rac{-4}{3}
ight)=\left(rac{(-10 imes6)+(5 imes11)}{66}
ight)+\left(rac{-4}{3}
ight)$$

$$=\frac{-66+55}{66}+\left(\frac{-4}{3}\right)$$

$$=\left(\frac{-5}{66}\right)+\left(\frac{-4}{3}\right)=\frac{-5+(-4\times22)}{66}$$

$$=\frac{-5+(-88)}{66}=\frac{-93}{66}$$

$$(a+b)+c=rac{31}{22}$$
 .....(1)

Also 
$$a+(b+c)=rac{-10}{11}+\left(rac{5}{6}+\left(rac{-4}{3}
ight)
ight)=rac{-10}{11}+\left(rac{5+(-4 imes2)}{6}
ight)$$

$$= \frac{-10}{11} + \left(\frac{5 + (-8)}{6}\right) = \frac{-10}{11} + \left(\frac{-3}{6}\right)$$

$$=\frac{(-10\times6)+(-3)\times-11}{66}=\frac{-60+(-33)}{66}=\frac{-93}{66}$$

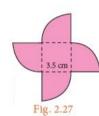
$$a + (b + c) = \frac{-31}{22}$$
 .....(2)

From (1) and (2), (a + b) + c = a + (b + c) is true for rational numbers.

Now (a x b) x c= 
$$\left(\frac{-10}{11} \times \frac{5}{6}\right) \times \frac{-4}{3} = \frac{-50}{66} \times \left(\frac{-4}{3}\right) = \frac{-50 \times \left(-\cancel{A}^2\right)}{\cancel{66} \times \cancel{3}}$$

(a x b) x c = 
$$\frac{100}{99}$$
 .....(1)

$$a imes (b imes c) = rac{-10}{11} imes \left(rac{5}{6} imes \left(rac{-4}{3}
ight)
ight) = rac{-10}{11} imes \left(rac{-20}{18}
ight)$$


$$=\frac{-10}{11}\times\left(\frac{-10}{9}\right)$$

$$a \times (b \times c) = \frac{100}{99}$$
 .....(2)

From (1) and (2) a x (b x c) = (a x b) x c is true for rational numbers.

Thus associative property is true for addition and multiplication of rational numbers.

37) Find the perimeter and area of the given Figure.  $\left(\pi = \frac{22}{7}\right)$ 



**Answer:** Radius of a circular quadrant, r = 3.5 cm and side of a square, a = 3.5 cm. The given figure is formed by the joining of 4 quadrants of a circle with each side of a square. The boundary of the given figure consists of 4 arcs and 4 radii.

(i) Perimeter of the given combined shape

=  $4 \times 1$  length of the arcs of the quadrant of a circle +  $4 \times 1$  radius

$$=\left(4 imesrac{1}{4} imes2\pi r
ight)+4r$$

$$=\left(4 imesrac{1}{4} imes2 imes3.5
ight)+(1 imes3.5)$$

$$= 22 + 14 = 36$$
 cm (approximately)

(ii) Area of the given combined shape

= area of the square +  $4 \times area$  of the quadrants of the circle

$$a^2 = \left(4 imes rac{1}{4} imes \pi r^2
ight)$$

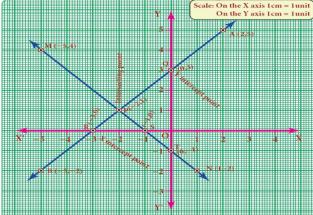
$$=(3.5 imes3.5)+\left(rac{22}{7} imes3.5 imes3.5
ight)$$

$$A = 12.25 + 38.5 = 50.75 \text{ cm}^2 \text{ (approximately)}$$

38) Factorise:  $4x^2y + 8xy$ 

**Answer:** We have, $4x^2y + 8xy$ 

This can be written as =  $(2 \times 2 \times X \times X \times y) + (2 \times 2 \times X \times Y)$ 


Taking out the common factor 2,2,x,y,we get

$$= 4xy (x + 2)$$

$$= 4xy(x+2)$$

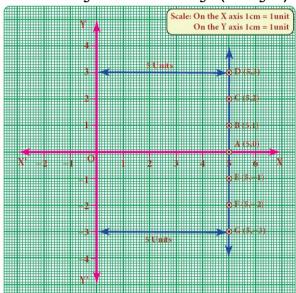
39) Draw straight lines by joining the points A(2, 5) B(-5,-2) M(-5, 4) N(1,-2) also find the point of intersection

**Answer:** Plot the first pair of points A and B in I and III quadrants. Join the points and extend it to get AB straight line. Plot the second pair of points M and N in II and IV quadrants. Join the points and extend it to get MN straight line.



Now, both lines are intersect at P(-2,1)

- (i) The line AB intersect the coordinate axis, ie) x-axis at R(-3,0) and y-axis at Q(0,3)
- (ii) The line MN intersect the coordinate axis, ie) x-axis at S(-1,0) and y-axis at T(0,-1)
- 40) Draw the graph of x = 5


**Answer:** x = 5 means that x-coordinate is always 5 for whatever value of y-coordinate. So we may

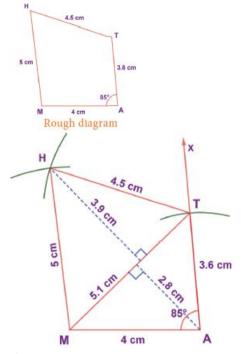
give any value for y-coordinate and this is tabulated as follows

| X | 5  | 5  | 5 | 5 | 5 |
|---|----|----|---|---|---|
| y | -2 | -1 | 0 | 1 | 2 |

x = 5 is given (fixed)

Take any value for y (Why?)




The points are (5,-2) (5,-2) (5,0) (5,2) (5,3). Plot the points in the graph and join them. We get a straight line parallel to Y axis at a distance of 5 units from the Y axis.

41) Construct a quadrilateral MATH with MA = 4 cm, AT = 3.6 cm, TH = 4.5 cm, MH = 5 cm and  $\angle A$  = 85°. Also find its area.

**Answer:** Given:

MA = 4 cm, AT = 3.6 cm,

TH = 4.5 cm, MH = 5 cm and  $\angle A = 85^{\circ}$ 



Steps:

1. Draw a line segment MA = 4 cm.

2. Make  $\angle A = 85^{\circ}$ .

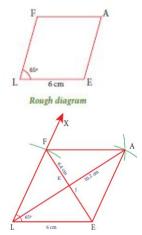
3. With A as centre, draw an arc of radius 3.6 cm. Let it cut the ray AX at T.

4. With M and T as centres, draw arcs of radii 5 cm and 4.5 cm respectively and let them cut at H.

5. Join MH and TH.

6. MATH is the required quadrilateral.

Calculation of Area:


Area of the quadrilateral MATH =  $\frac{1}{2}$  × d × (h<sub>1</sub>+ h<sub>2</sub>) sq.units

$$= \frac{1}{2} \times 5.1 \times (3.9 + 2.8)$$

 $= 2.55 \times 6.7 = 17.09 \text{ cm}^2$ 

42) Construct a rhombus LEAF with LE = 6 cm and  $\angle$ L = 65°. Also find its area

**Answer:** Given: KE = 6 cm and  $\angle L = 65^{\circ}$ 



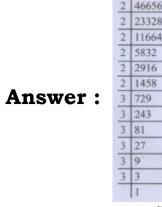
(i) Draw a line segment LE = 6 cm.

(ii) At L on LE, make  $\angle ELX = 65^{\circ}$ 

(iii) With L as centre draw an arc of radius 6 cm. Let it cut LX at F.

(iv) With E and F as centres, draw arcs of radius 6 cm each and let them cut at A.

(v) Join EA and AF.


(vi) LEAF is the required rhombus

Calculation of area:

Area of rhombus LEAF =  $rac{1}{2} imes d_1 imes d_2 sq.\,units$ 

= 
$$rac{1}{2} imes 6.4 imes 10.2=32.64~sq.~cm$$

43) What is the square root of cube root of 46656?



$$\sqrt[3]{46656} = \sqrt[3]{2^6 \times 3^6} = (2^6 \times 3^6)^{1/3}$$
=  $2^2 \times 3^2$ 
Square root of  $2^2 \times 3^2$  is  $\sqrt{2^2 \times 3^2}$ 
=  $(2^2 \times 3^2)^{1/6}$ 
=  $2 \times 3 = 6$ 

The square root of cube root of 46656 is 6.