Model Question Paper

Atomic physics - Part V

12th Standard

	Physics	Reg.No. :				ı
I.Answer all the questions.				_		

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 85 Part-A

5 x 1 = 5

1) The equation for the minimum wavelength of x-rays continous spectrum is given by

(a)
$$\lambda_{min}=\frac{12400m}{V}$$
 (b) $\lambda_{min}=\frac{12400}{V}$ (c) $\lambda_{min}=\frac{eV}{hc}$ (d) $\lambda_{min}=\frac{he}{cV}$

- 2) When the electrons are jumping from N shell to M shell then the odserved X-ray line spectrum is
 - (a) M_{α} line (b) K_{α} line (c) M_{β} line (d) K_{β} line
- 3) According to Moseley's law, the relation between the frequency of characteristic X-ray line and the atomic number of the element which emits it is

(a)
$$\sqrt{v}=a\,(Z-b)$$
 (b) $\sqrt{v}\propto Z^2$ (c) $\sqrt{v}=(Z-a)$ (d) $v^2\propto \sqrt{Z}$

- 4) In Ruby laser the wavelenght of light used for optical pumping is
 - (a) $6563\mathring{A}$ (b) $6940\mathring{A}$ (c) $5500\mathring{A}$ (d) $6943\mathring{A}$
- 5) The ratio of Ne and He gases used in He-Ne laser is
 - (a) 4:1 (b) 10^6 :1 (c) 1:4 (d) 1: 10^6

Part-B 5 x 3 = 15

- 6) Calculate the longest wavelength that can be analysed by a rock salt crystal of spacing $d=2.82\mathring{A}$ in the first order.
- An X-ray diffraction of a crystal gave the closest line at an angle of 6^0 $27^{'}$ if the wavelength of X-ray is $0.58\text{\r{A}}$, find the distance between the two cleavage planes.
- How much should be the voltage of an X-ray tube so that the electrons emitted from the cathode may give an X-ray of wavelength 1 \mathring{A} after striking the target.?
- Find the minimum wavelength of X-rays produced by an X-ray tube at 1000kV
- 10) The minimum wavelength of X-rays produced from a Coolidge tube is 0.05 nm. Find the operating voltage of the Coolidge tube.

5 x 5 = 25 Part-C

- 11) How did Sommerfeld explain the fine spectral of spectral lines of hydrogen atom?
- 12) Derive an expression for the frequency of spectral line and also for Rydberg's constant.
- 13) What are the drawbacks of Sommerfeld's atom model.
- 14) Obtain the expression for the radius of the nth of an electron based on Bohr's theory.
- 15) Explain the spectral series of hydrogen atom. (diagram not neceeary).

 $4 \times 10 = 40$

- 16) Derive Bragg's law. Explain how a Bragg's spectrometer can be used to determine the wavelength of the X-rays.
- 17) State Bohr's postulates. Obtain an expression for the radius of nth orbit of the hydrogen atom.
- 18) a) Explain with principle, Millikan's oil drop method in determining the charge of an electron.

Derive an expression for the radius of the nth orbit. Hence prove that the energy of an electron in that orbit is $E_n=rac{-me^4}{8E^2n^2h^2}$
