Model Question Paper

Analytical Geometry - Part II

12th Standard

	Business Maths
cwor all the questions	

Reg.No.:			

I.Answer all the questions. II.Use Blue pen only.

Time: 01:30:00 Hrs Total Marks: 90

Section-A 5x1=5

1) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ represents an ellipse (a >b) if

(a)
$$b^2=a^2(1-e^2)$$
 (b) $b^2=-a^2(1-e^2)$ (c) $b^2=\frac{a^2}{(1-e^2)}$ (d) $b^2=\frac{1-e^2}{a^2}$

2) Latus rectum of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b) is

(a)
$$\frac{2a^2}{b}$$
 (b) $\frac{a^2}{2b}$ (c) $\frac{2b^2}{a}$ (d) $\frac{b^2}{2a}$

3) Focus of $y^2 = 16x$ is

4) Equation of the directrix of $\,y^2=-8x\,\,$ is

(a)
$$x+2=0$$
 (b) $x-2=0$ (c) $y+2=0$ (d) $y-2=0$

5) The length of the latus ractum of $\,3x^2+8y=0$, is

(a)
$$\frac{8}{3}$$
 (b) $\frac{2}{3}$ (c) 8 (d) $\frac{3}{8}$

Section-B 5 x 6 = 30

- 6) Find the equation of the ellipse whose foci are (4, 0) and (–4, 0) and $e=\frac{1}{3}$
- 7) Find the centre, vertices, eccentricity, foci and latus rectum and directrices of the ellipse $9x^2+4y^2=36$.
- 8) Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2.
- 9) Find the equation of the hyperbola whose centre is (1, 0), one focus is (6, 0) and transverse axis 6.
- 10) Find the centre, eccentricity, foci and directrices for the hyperbola: $9x^2-16y^2=144$.

Section-C 5 x 10 = 50

- 11) The girder of railway bridge is a parabola with its vertex at the highest point, which is 15 metres above the span of length 150 metres. Find its height 30 metres from the mid point.
- 12) Find the centre, eccentricity, foci and directrices of the ellipse $3x^2 + 4y^2 6x + 8y 5 = 0$.
- 13) Find the centre, eccentricity, foci and latus rectum of the hyperbola $9x^2 16y^2 18x 64y 199 = 0$.
- 14) The equation $4x^2 + 4xy + y^2 + 4x + 32y + 16 = 0$ represents a conic. Identify the conic.
- 15) a) Find the equation to the hyperbola which passes through (2,3) and has for its asymptotes the lines 4x + 3y 7 = 0 and x 2y = 1.
 - b) Find the equation of the parabola with focus (1,2) and directrix x+y-2=0.
