Model Question Paper

Differential Equations - Part III

12th Standard

	Maths	Reg.No. :			
Answer all questions.					

II.Use blue pen only.

Time: 01:00:00 Hrs Total Marks: 100

Section-A 5x1=5

- 1) The complementary function of $\left(D^2+1\right)y=e^{2x}$ is (a) $\left(Ax+B\right)e^x$ (b) $A\cos x+B\sin x$ (c) $\left(Ax+B\right)e^{2x}$ (d) $\left(Ax+B\right)e^{-x}$
- 2) A particular integral of $\left(D^2-4D+4\right)y=e^{2x}$ is (a) $\frac{x^2}{2}e^{2x}$ (b) xe^{2x} (c) xe^{-2x} (d) $\frac{x}{2}e^{-2x}$
- 3) The differential equation of the family of lines y = mx is

(a)
$$\frac{dy}{dx}=m$$
 (b) $y\,\mathrm{d}\,x-x\,\mathrm{d}y=0$ (c) $\frac{d^2y}{dx^2}=0$ (d) $y\,\mathrm{d}\,x+x\,\mathrm{d}y=0$

- 4) The degree of the differential equation $\sqrt{1+\left(\frac{dy}{dx}\right)^{1/3}}= -\frac{d^2y}{dx^2}$
 - (a) 1 (b) 2 (c) 3 (d) 6
- 5) The degree of the differential equation $c=\frac{\left[1+\left(\frac{dy}{dx}\right)^3\right]^{2/3}}{\frac{d^3y}{dx^3}}$ where c is a constant is
 - (a) 1 (b) 3 (c) -2 (d) 2

Section-B 4x3=12

- 6) Form the differential equations by eliminating arbitrary constants given in brackets $y=e^{3x}$ $(C\cos 2x+D\sin 2x)$ $\{C,D\}$
- 7) Form the differential equation from the following equation. $y=e^{2x}(A+Bx) \label{eq:y}$
- 8) Form the differential equation from the following equation.
- $y = e^x (A\cos 3x + B\sin 3x)$
- 9) Form the differential equation from the following equation. $y^2 = 4a(x-a) \label{eq:y2}$

Section-C 5 x 6 = 30

- 10) Solve the following: $rac{dy}{dx} + y = x$
- 11) Solve: $\left(D^2 13D + 12\right)y = e^{-2x}$
- 12) Solve the following: $yx^2 \ dx + e^{-x} \ dy = 0$
- 13) a) Solve the following: $(x^2 + 5x + 7)dy + \sqrt{9 + 8y y^2} dx = 0$

40

b) Solve the following: $\frac{dy}{dx} = sin(x+y)$

Section-D 2 x 10 = 20

- Solve $rac{dy}{dx}=e^{3x+y}$
- 15) Solve $(x^2 ay) dx = (ax y^2) dy$

(OR)