Model Question paper Probability 3

11th Standard

	11ul Standard				
	Maths Reg.No.:				
	I. Answer all the questions.				
	II. Use blue pen only.				
Ti	me : 02:00:00 Hrs		Total	Marks	s : 50
	Part - A			5 x	1 = 5
1)	Three coins are tossed. The probability of getting at least two heads is				
	(a) 3/8 (b) 7/8 (c) 1/8 (d) 1/2				
2)	A and B are two events such that $P(A) \neq 0$, $P(B) \neq 0$. If A and B are mutually exclusive, then				
	(a) $P(A \cap B) = P(A) P(B)$ (b) $P(A \cap B) \neq P(A) P(B)$ (c) $P(A/B) = P(A)$ (d) $P(B/A) = P(A)$				
3)	X speaks truth 95 percent of cases and Y in 80 percent of cases. The Percentage of cases they likely to contradict each other in stating same fact is				
	(a) 14% (b) 86% (c) 23% (d) 85.5%				
4)	Given P(A) = 0.50, P(B) = 0.40 and P(A \cap B) = 0.20 then P(A/ \overline{B})				
	(a) 0.50 (b) 0.40 (c) 0.70 (d) 0.10				
5)	Probability of an impossible event is				
•	(a) 1 (b) 0 (c) 2 (d) Φ				
	Part - B			5 x 2	= 10
6)					
-,	P(A)=0.30,P(B)=0.28,P(C)=0.26,P(D)=0.18				
7)					
	P(A)=1/2,P(B)=1/4,P(C)=2/9,P(D)=5/18				
8)					
9)	There are two identical boxes containing respectively 5 white and 3 red balls, 4 white and 6 red balls. A box is chosen at random and a ball is drawn fr	om it if the	e ball is w	hite, v	what
	is the probability that it is from the first box?				
10	Three urns are given each containing red and white chips as given below.Urn I: 6 red 4 white; Urn II: 3 red 5 white; Urn III: 4 red 6 white An urn is cho	sen at ran	ıdom and	a chir	p is
	drawn from the urn.If the chip is white find the probability that it is from urn II.			•	
	Part - C			5 x 3	= 15
11	.) A and B are two events associated with random experiment for which P(A)=0.36, P(A)=0.36, P(A or B)=0.09 and P(A and B)=0.25. Find (i) P(B), (ii) $P(\bar{A})$	$\cap \bar{B})$			
12	f A and B are mutually exclusive events P(A)=0.28, P(B)=0.44, find				
	$(A\cap ar{B})$				
13	Given P(A)=0.5,P(B)=0.6 and $(A\cap B)$ =0.24.				
	$P(A \cup B)$				
14	A card is drawn at random from a deck of 52 cards. What is the probability that the drawn card is (i) a queen or club card (ii) a queen or a black card				
15	(Additive theorem on probability) If A and B are any two events				
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$				
	Part - D			4 x 5	= 20
16	i) if the events such A and B are independent and P(A)=0.25, P(B)=0.48, find P(B/A)				
17	A cricket club has 15 members, of whom only 5 can bowl. What is the probability that in a team of 11 members at least 3 bowlers are selected?				
18	3) If $P(A) = 0.4 P(B) = 0.5 P(A \cap B) = 0.25 \text{ find}$				
	P(B/A)				
19	A coin is tossed twice. Event E and F are defined as follows: E = Head on first toss, F = head on second toss. Find				
	P(E/F)				
