Model Question Paper

Chemical Equilibrium - II - Part II

12th Standard

	Chemistry	Reg.No.:			
A manual and the amuse the man					

I.Answer all the questions.
II.Use blue pen only.

1) Two moles of ammonia gas are introduced into a previously evacuated $1.0 \ dm^3$ vessel in which it partially dissociates at high temperature. At equilibrium $1.0 \ mole$ of ammonia remains. The equilibrium constant K_c for the dissociation is

- (a) $27/16 \left(mole\ dm^{-3}\right)^2$ (b) $27/8 \left(mole\ dm^{-3}\right)^2$ (c) $27/4 \left(mole\ dm^{-3}\right)^2$ (d) None of these
- 2) An equilibrium reaction is endothermic if K_1 and K_2 are the equilibrium constants at T_1 and T_2 temperatures respectively and if T_2 is greater than T_1 then
 - (a) K_1 is less than K_2 (b) K_1 is greater than K_2 (c) K_1 is equal to K_2 (d) None
- 3) In the Haber process the yield of ammonia is greater
 - (a) at hight pressure (b) at low pressure (c) at high temperature (d) in absence of catalyst
- 4) Forward reaction takes place, when
 - (a) $Q < K_c$ (b) $Q > K_c$ (c) $Q = K_c$ (d) $K_c \frac{1}{Q}$
- 5) Presence of moisture in contact process:
 - (a) activates the catalyst (b) deactivates the catalyst (c) increase the product (d) makes the catalyst porous

Part-B 5 x 3 = 15

- 6) What happens when $\Delta n_g=0, \; \Delta n_g=-ve, \; \Delta n_g=+ve$ in a gaseous reaction.
- 7) Calculate Δn_g , for the following reactions i) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ ii) $2H_2O_{(g)} + 2CI_{2(g)} \rightleftharpoons 4HCI_{(g)} + O_{(g)}$
- 8) Find out the unit for K_cK_p for the below given equilibria i) $H_2+I_2\rightleftharpoons 2HI$ ii) $PCI_5\rightleftharpoons PCI_3+CI_2$ iii) $2SO_2+O_2\rightleftharpoons 2SO_3$ iv) $N_2+3H_2\rightleftharpoons 2NH_3$
- 9) What is the effect of addition of catalyst in an equilibrium?
- 10) What is the effect of concentration on equilibrium?

Hint: $K_P = K_C(RT)^{\Delta n}g$

Part-C 6 x 5 = 30

- 11) In 1 litre volume reaction vessel, the equilibrium constant Kc of the reaction PCl₅ \rightleftharpoons PCl₃ + Cl₂ is 2 × 10⁻⁴ lit⁻¹. What will be the degree of dissociation assuming only a small extent of 1 mole of PCl₅ has dissociated?
- 12) At temperature T1, the equilibrium constant of reaction is K1. At a higher temperature T2, K2 is 10% of K1. Predict whether the equilibrium is endothermic or exothermic.
- 13) At 35°C, the value of Kp for the equilibrium reaction $N_2O_4 \rightleftharpoons 2NO2$ is 0.3174, Calculate the degree of dissociation when P is 0.2382 atm.
- 14) State Lechatellier's principle. Discuss the effect of pressure, concentration and temperature on the following reaction $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$.
- 15) The equilibrium constant of the dissociation equilibrium is the reciprocal of the equilibrium constant of the formation equilibrium. Illustrate with a suitable example.
- 16) Discuss the conditions which favour the formation of ammonia by Haber's process

Part-D 2X10=20

- 17) a) For the equilibrium 2NOCl(g) \rightleftharpoons 2NO(g) + Cl₂(g) the value of the equilibrium constant K_C is 3.75×10^{-6} at 790° C. Calculate Kp for this equilibrium at the same temperature.
 - b) For the equilibrium $2SO_3(g) \rightleftharpoons SO_2(g) + O_2(g)$, the value of equilibrium constant is 4.8×10^{-3} at 700° C. At equilibrium, if the concentrations of SO^3 and SO^2 are 0.60M and 0.15M respectively. Calculate the concentration of O_2 in the equilibrium mixture.
- 18) a) Apply Le chatelier principle to Haber's process of manufacture of ammonia.
 - b) Apply Le Chatelier's principle to contact process of manufacture of SO₃.
