Model Question Paper

Dual nature of radiation and Matter - relativity - Part I

12th Standard

	i nyses	Reg.No.:				
	I.Answer all the questions.					
	II.Use Blue pen only.					
Tim	ne : 01:00:00 Hrs			Tota	ıl Marl -	
1\	Part-A				5)	x 1 = 5
	A photon of frequency v is incident on a metal surface of thresold frequency v_o , the kinetic energy of the emitted photoelectron is					
	(a) $h(v - v_o)$ (b) hv (c) hv_o (d) $h(v + v_o)$					
	The work function of a photoelectric material is 3.3eV.the threshold frequency will be equal to					
	(a) 8×10^{14} (b) 8×10^{10} (c) 5×10^{20} (d) 4×10^{14}					
3)	The stopping potential of a metal surface is independent of					
	(a) frequency of incident radiation (b) intensity of icident radiation (c) the nature of metal surface (d) velocity of electrons en	nitted				
4)	At the threshold frequency,the velocity of electrons is					
	(a) zero (b) maximum (c) minimum (d) infinite					
5)	The photelectric effect can be explained on the basis of					
	(a) corpuscular theory of light (b) wave theory of light (c) electromagnetic theory of light (d) quantom theory of light					
	Part-B				3)	x 3 = 9
6)	What is photoelectric effect?					
7)	Define stopping potential.					
8)	Define threshold frequency.					
	Part-C					5 = 25
9)	The photoelectric threshold wavelength of a metal is 5000 Å. Find i) the work function in electron volts and ii) the kinetic energy of the	ne photoelec	trons in	electro	n volt	S,
	ejected by the light of wave length 4000 Å					
	Red light of wavelength 670 nm produces photoelectrons from a certain metal which requires a stopping potential of 0.5 V. What is the wavelength of the metal?	e work functi	on and t	hresho	old	
11)	Calculate the velocity of a photoelectron if the work function of the target material is 1.24 eV and the wave length of incident light is 4	$.36 imes 10^{-7}$	m.			
	Part-D				4 x 1	0 = 40
	Derive Einstein's mass energy relation.					
13)) Show that the de-Broglie wavelength of an electron moving under a potential difference of V volt is $rac{h}{\sqrt{2eVm}}$					
14)	a) Draw a neat sketch of an electron mi <mark>croscope.</mark> Explain its working.					
	(OR)					
	b) Derive Einstein's photo electric equation.					
15)	The rest mass of an electron is $9.1 imes10^{-31}~kg$. What will be its mass if it moves with $4/5^{th}$ of the speed of the light?					
	b) Calculate the thresold frequency of photons which can remove photoelectrons from (i) caesium and ii) nickel surface (work function of nickel is 5.9 eV).	tion of caesi	um is 1.8	eV and	d work	<
