Model Question paper Gaseous state - I 3

11th Standard

		TIUI Stalluaru	
		Chemistry	Reg.No.:
I. Answer all the questions. II. Use blue pen only.			
Time: 00:45:00 Hrs			Total Marks : 35
	Part - A		2 x 1 = 2
1) = +1			

1) The critical temperature of a gas is that temperature

- (a) Above which it can no longer remain in the gaseous state. (b) Above which it can not be liquified by pressure (c) At which it solidifies
- (d) At which volume of gas becomes zero
- 2) The molecules of a gas A travel four times faster than the molecules of gas B at the same temperature. The ratio of molecular weight (M_A/M_B) will be
 - (a) 1/16 (b) 4 (c) 1/4 (d) 16

Part - B 3x2=6

- 3) Compare the partial pressures of gases A and B when 3 moles of A and 5 moles of B mixed in a constant volume, and 25^o C and 1 atm pressure.
- 4) A sample of an ideal gas escapes into an evacuated container, there is no change in the kinetic energy of the gas. Why?
- 5) What are measurable properties of gases?

Part - C 4 x 3 = 12

- 6) Define Graham's law of diffusion.
- 7) Give the values of an R-gas constant in calories and Joules.
- 8) Write the significance of Vanderwaal's constants.
- 9) What is meant by inversion temperature?

Part - D 3 x 5 = 15

- 10) Calculate the pressure exerted by 5 moles of CO₂ in the one-litre vessel at 47° C using Vanderwaal's equation. Also, report the pressure of the gas if it behaves ideally in nature. Given that a=3.592 atm lit²mol⁻², b=0.0427 lit mol⁻¹
- 11) Vanderwaal's constant in liter atmosphere per mole for carbon dioxide are a=3.6 and b= 4.28×10^{-2} . Calculate the critical temperature and critical volume of the gas. R=0.0820 lit atm K⁻¹ mol⁻¹
- 12) Describe Claude's process of liquefaction of gases with neat diagram.

*********<mark>******</mark>**********