Model Question Paper

Vector Algebra - Part I

12th Standard

Maths

I.Answer all the Questions.		

II.Use blue pen only.

Time: 00:45:00 Hrs

Reg.No.

Section-A

Total Marks: 80

4 x 1 = 4

1) If \vec{a} is a non-zero vector and m is a non-zero scalar then $m\vec{a}$ is a unit vector if

(a)
$$m=\pm 1$$
 (b) $a=|m|$ (c) $a=\frac{1}{|m|}$ (d) $a=1$

2) If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, then $(\vec{a}+\vec{b})$ is a unit vector if

(a)
$$\theta = \frac{\pi}{3}$$
 (b) $\theta = \frac{\pi}{4}$ (c) $\theta = \frac{\pi}{2}$ (d) $\theta = \frac{2\pi}{3}$

3) If \vec{a} and \vec{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then \vec{a} . \vec{b} is equal to

(a)
$$\sqrt{3}$$
 (b) $-\sqrt{3}$ (c) 2 (d) $\frac{-\sqrt{3}}{2}$

4) If $ec{u}=ec{a} imes(ec{b} imesec{c})+ec{b} imes(ec{c} imesec{a})+ec{c}(ec{a} imesec{b})$, then

(a) u is a unit vector (b) $\vec{u}=\vec{a}+\vec{b}+\vec{c}$ (c) $\vec{u}=\vec{0}$ (d) $\vec{u}\neq\vec{0}$

Section-B 4 x 3 = 12

5) If $\vec{a}=\vec{i}+\vec{j}+2\vec{k}$ and $\vec{b}=3\vec{i}+2\vec{j}-\vec{k}$ find $\left(\vec{a}+3\vec{b}\right).\left(2\vec{a}-\vec{b}\right)$

6) Find the angles which the vectors $\vec{i}-\vec{j}+\sqrt{2}~\vec{k}$ makes with the coordinate axes.

7) Show that the vector $\vec{i} + \vec{j} + \vec{k}$ is equally inclined with the coordinate axes.

8) If $ec{a}$ and $ec{b}$ are unit vectors inclined at an angle heta , then prove that $cosrac{ heta}{2}=rac{1}{2}|ec{a}+ec{b}|$

4 x 6 = 24

9) Prove by vector method If the diagonals of a parallelogram are equal then it is a rectangle

10) Prove by vector method The mid point of the hypotenuse of a right angled triangle is equidistant from its vertices.

11) Prove by vector method The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides.

Section-C

12) Forces of magnitudes 3 and 4 units acting in the directions $6\vec{i}+2\vec{j}+3\vec{k}$ and respectively act on a particle which is displaced from the point (2,2,-1) to (4,3,1). Find the work done by the forces.

Section-D 4 x 10 = 40

13) Prove that $\cos (A - B) = \cos A \cos B + \sin A \sin B$

14) Prove that $\sin (A - B) = \sin A \cos B - \cos A \sin B$

15) If $\vec{a}=2\vec{i}+3\vec{j}-\vec{k}\;,\; \vec{b}=-2\vec{i}+5\vec{k}\;,\; \vec{c}=\vec{j}-3\vec{k}$ Verify that $\vec{a}\times\left(\vec{b}\times\vec{c}\right)\;=\;(\vec{a}.\;\vec{c})\;\vec{b}\;-\left(\vec{a}.\;\vec{b}\right)\;\vec{c}$
