Model Question paper Functions and Graphs 1

11th Standard

	11th Standard				_
	Maths	Reg.No. :			
	. Answer all the questions.				_
	I. Use blue pen only.				
Time: 00:50:00 Hrs			Tot	al Marks:	
	Part - A			5 x 1	= 5
1)	Identify the correct statement.				
	(a) The set of real numbers is a closed set $$ (b) The set of all non-negative real numbers is represented by $(0,\infty)$				
	(c) The set [3,7] indicates the set of all natural numbers between 3 and 7 (d) (2,3) is a subset of [2,3]				
2)	Identify the correct statements of the following:				
	(i) A relation is a function				
	(ii) A function is a relation				
	(iii) "A function which is not a relation" is not possible				
	(iv) 'A relation which is not a function' is possible				
	(a) (ii), (iii) and (iv) (b) (ii) and (iii) (c) (iii) and (iv) (d) All				
3)	The inverse of f: $R \rightarrow R^+$; $f(x)=x^2$ is				
	(a) not onto (b) not one-to-one (c) not onto and not one-to-one (d) not at all a function				
4)	If AxB={(1,2) (1,3) (1,6) (7,2) (7,3) (7,6)}, then the set A is				
	(a) $\{2,3,6\}$ (b) $\{1,7\}$ (c) $\{1,2,3,6,7\}$ (d) Φ				
5)	$A=\{1,2,3\}$, $B=\{4,5,6\}$ f:A \rightarrow B is defined as $f(1)=4$, $f(2)=5$, $f(3)=6$ then f^{-1} is				
	(a) {(4,1)(5,2) (6,3)} (b) {(1,4) (2,5) (3,6)} (c) {(1,1) (2,2) (3,3)} (d) {(4,4) (5,5) (6,6)}				
	Part - B			5 x 2 =	10
6)	If $f, g : R o R$ defined by $f(x) = x + ext{land } g(x) = x^2 \operatorname{find} \left(f \circ g \right) (3)$				
7)	Let $f:R o R$ be defined by $f(x)=3x+2$. Find f^{-1} and show that for $f\circ f^{-1}=f^{-1}\circ f=I$				
8)	Solve the following inequation:				
	$2x^2 - 3x + 5 < 0$				
9)	If x is real, prove that the range of $f(x)=rac{x^2-2x+4}{x^2+2x+4}$ is between $\left[rac{1}{3},3\right]$				
10)	For the functions f, g, as defined in (1), define				
	(i) $(f+g)(x)$ (ii) $\left(\frac{f}{g}\right)(x)$ (iii) $(fg)(x)$ (iv) $(f-g)(x)$ (v) $(gf)(x)$				
	Part - C			4 x 5 =	20
11)	Let A = $\{1, 2, 3\}$, B = $\{3, 5, 7, 8\}$ and f from A to B is defined by f: $x \rightarrow 2x + 1$ i.e. $f(x) = 2x + 1$.				
	(a) Find f(1), f(2), f(3)				
	(b) Show that f is a function from A to B				
	(c) Identify domain, co-domain, images of each element in A and range of f				
	(d) Verify that whether the range is equal to codomain				
12)	A father 'd' has three sons a, b, c. By assuming sons as a set A and father as a singleton set B, show that				
	(i) the relation 'is a son of' is a function from $A \rightarrow B$ and				
	(ii) the relation 'is a father of' from $B \rightarrow A$ is not a function				
13)	Name the function and independent variable of the following function:				
	$(i)f(\theta)=\sin\theta$				
	(ii) $f(x) = \sqrt{x}$				
	(iii)f(y)=e ^y				
	(iv)f(t)=log _e t				
14)	Let f, g: R \rightarrow R be defined by f(x) = 2x + 1, and g(x) = x - 1 ² . Show that (fog) = (gof).				
