Model Question paper Gaseous state - I 1

11th Standard

			 	 _
Chemistry Reg.No	:			

I. Answer all the questions.

II. Use blue pen on	ıΙv.
---------------------	------

Time: 00:45:00 Hrs Total Marks: 35

Part - A 2x1=2

 $1) \quad \hbox{A curve drawn at constant temperature is called an isotherm.} This shows relationship between$

2) The critical temperature of a gas is that temperature

(a) P and 1/V (b) PV and V (c) P and V (d) V and 1/P

- (a) Above which it can no longer remain in the gaseous state. (b) Above which it can not be liquified by pressure (c) At which it solidifies
- (d) At which volume of gas becomes zero

Part - B 3 x 2 = 6

- 3) Write the mathematical expression for Boyle's law
- 4) Compare the partial pressures of gases A and B when 3 moles of A and 5 moles of B mixed in a constant volume, and 25° C and 1 atm pressure.
- 5) Give the correction factors for the volume and pressure deviation for a Vanderwaal's gas.

Part - C 4 x 3 = 12

- 6) What is the molar volume of nitrogen at 500K and 600 atm according to the ideal gas law?
- 7) Define Graham's law of diffusion.
- 8) Give the values of an R-gas constant in calories and Joules.
- 9) What are the units of Vanderwaal's constants 'a' and 'b'?

Part - D 3 x 5 = 15

- 10) At 27°C, H₂ is leaked through a tiny hole in a vessel for 20 minutes. Another unknown gas at the same T and P as that of H₂ is leaked through the same hole for 20 minutes. After effusion of the gas, the mixture exerts a pressure of 6 atm. The H₂ content of the mixture is 0.7 moles. If the volume of the container is 3 liters what is the molecular weight of unknown gas?
- 11) Calculate the total pressure in a 10L cylinder which contains 0.4g of helium, 1.6g of oxygen, and 1.4g of nitrogen at 27^{o} C. Also calculate the partial pressure of He gas in the cylinder. Assume ideal behavior for gases. R=0.082 lit atm K⁻¹mol⁻¹
- 12) Vanderwaal's constant in liter atmosphere per mole for carbon dioxide are a=3.6 and b= 4.28×10^{-2} . Calculate the critical temperature and critical volume of the gas. R=0.0820 lit atm K⁻¹ mol⁻¹