Model Question Paper 1 ALGEBRA 1

11th Standard

	Maths	Reg.No.	:					
Ans	wer all the Questions						•	
Tim	e:02:00:00 Hrs				T	otal I	1arks	: 75
1)	$PartA$ If $\frac{ax}{(x+2)(2x-3)}=\frac{2}{x+2}+\frac{3}{2x-3}$, then a=					1	0 x 1 :	= 10
	(a) 4 (b) 5 (c) 7 (d) 8							
2)	If $nP_r=720 nC_r$, then the value of 'r' is							
	(a) 6 (b) 5 (c) 4 (d) 7							
3)	How many difficult arrangements can be made out of the letters of words ENGINEERING? (a) 11! (b) $\frac{11!}{(3!)^2(2!)^2}$ (c) $\frac{11!}{3!2!}$ (d) $\frac{11!}{3!}$							
4)	The number of 4 digit numbers that can be formed by the digits 3, 4, 5, 6, 7, 8, 0 and no digit is being repeated is							
5)	The number of diagonals that can be drawn by joining the vertices of an octagon is							
-,	(a) 28 (b) 48 (c) 20 (d) 24							
6)	A polygon has 44 diagonals, then the number of its sides is							
-,	(a) 11 (b) 7 (c) 8 (d) 12							
7)	20 persons are invited for a party. The number of wave in which they and the best can be coated at a circular table if two particular persons in	e seated	on ei	ther s	side c	of the	host i	is
	equal to							
	(a) 18!2! (b) 18!3! (c) 19!2! (d) 20!2!							
8)	If n is a positive integer then the number of terms in the expansion of (x+a) ⁿ is							
	(a) n (b) n-1 (c) n+1 (d) n+2							
9)	The values of $nC_0-nC_1+nC_2-nC_3+(-1)^n.nC_n$ is							
	(a) 2^{n+1} (b) n (c) 2^n (d) 0							
10)	The sum of the coefficients in the expansion of (1-x) ¹⁰ is							
	(a) 0 (b) 1 (c) 10 ² (d) 1024							
	Part B					1	0 x 2 :	= 20
11)	equal to							
12)	Resolve into partial fractions							
	$\frac{7x-1}{6-5x+x^2}$							
13)	Resolve into partial fractions							
	$\frac{x^2 + x + 1}{(x - 1)(x - 2)(x - 3)}$							
14)	Resolve into partial fractions							
	$\frac{1}{(x-1)(x+2)^2}$							
15)	Resolve into partial fractions							
	$\frac{x-2}{(x+2)(x-1)^2}$							
16)	Resolve into partial fractions							
	$\frac{x+1}{(x-2)^2(x+3)}$							
17)	Resolve into partial fractions							
,	$\frac{x^2 - 6x + 2}{x^2(x+2)}$							
18)	Resolve into partial fractions $\frac{2x^2-5x-7}{(x-2)^3}$							
19)	Resolve into partial fractions $\frac{x^2-3}{(x+2)(x^2+1)}$							
20)	$(x+2)(x^2+1)$ Resolve into partial fractions							
/	x+2							
	$(x+1)(x^2+1)$						5 v 2 ·	- 15

Turce

- 21) In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent a competition. In how many ways can the teacher make this selection?
- 22) Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
- 23) A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
- 24) Twelve students compete in a race. In how many ways first three prizes be given?

Part D 6 x 5 = 30

- 26) Evaluate the following: ${}_{5}P_{3} \label{eq:polyantimetric}$
- 27) Evaluate the following: $$_{15}P_{3}$$
- 28) Evaluate the following: $_{25}P_{20} \label{eq:polyantimetric}$
- 29) Evaluate the following: ${}_9P_5$
- 30) If ${}_{n}P_{4}=20.$ ${}_{n}P_{3}$, find n.
- 31) Evaluate the following: ${}_5P_5 \label{eq:polyant}$
