## **Model Question Paper**

## Application of differentiation- II - Part III

12th Standard

|                            | Business Maths |
|----------------------------|----------------|
| and all along an early and |                |

I.Answer all the questions. II.Use Blue pen only.

1) If  $f(x,y)=2x+ye^{-x}$  , then  $f_y(1,0)$  is equal to (a) e (b)  $\frac{1}{e}$  (c)  $e^2$  (d)  $\frac{1}{e^2}$ 

2) If  $f(x,y)=x^3+y^3+3xy$  then  $f_{xy}$  is (a) 6x (b) 6y (c) 2 (d) 3

3) The elasticity of demand when marginal revenue is zero, is

(a) 1 (b) 2 (c) -5 (d) 0

**Section-B** 5 x 6 = 30

- 4) The cost function, when the output is x, is given by  $C=x(2e^x+e^x)$ . Show that the minimum avertage cost is  $2\sqrt{2}$ .
- 5) Find EOQ for the data given below. Also verify that carrying costs is equal to to ordering costs at EOQ.

| Item | Montly Requirement | Ordering cost per order | Carrying cost Per unit |
|------|--------------------|-------------------------|------------------------|
| Α    | 9000               | Rs. 200                 | Rs. 3.60               |
| В    | 25000              | Rs. 648                 | Rs. 10.00              |
| С    | 8000               | Rs. 100                 | Rs. 0.60               |

6) If  $u=x^3+y^3+z^3-3xyz$ , prove that  $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=3u$ 

7) If  $u=x^2y+y^2z+z^2x$ , show that  $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=(x+y+z)^2$ 

8) If  $u=log\sqrt{x^2+y^2}$ , show that  $\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2=\frac{1}{x^2+y^2}$ 

**Section-C** 5 x 10 = 50

- 9) A firm has revenue function R=8x and a production cost function  $C=150000+60\left(\frac{x^2}{900}\right)$ . Find the total profit function and the number of units to be sold to get the maximum profit.
- 10) A radio manufacturer finds that he can sell x radios per week at a Rs. p each, where  $p = 2(100 \frac{x}{4})$ . His cost of production of x radios per week is  $Rs. (120x + \frac{x^2}{4})$ . Show that his profit is maximum is when the production is 40 radios per week. Find also his maximum profit per week.
- 11) A manufacturer can sell x items per week at a price of p=600-4x rupees. Production cost of x items works out to Rs.C where C=40x+2000. How much production will yield maximum profit?
- 12) Find the optimum output of a firm whose total revenue and total cost functions are given by  $R=30x-x^2$  and C=20+4x, x being the output of the firm.
- 13) Calculate the EOQ in units and total variable cost for the following items, assuming an ordering cost of Rs.5 and a holding cost of 10%

| Item | Annual demand | Unit price (Rs.) |
|------|---------------|------------------|
| А    | 460 Units     | 1.00             |
| В    | 392 Units     | 8.60             |
| С    | 800 Units     | 0.02             |
| D    | 1500 Units    | 0.52             |

\*\*\*\*\*\*\*\*\*\*