Model Question paper 1 Probability 1

11th Standard

	Maths	Reg.No.:				
	. Answer all the questions.			•		
II. Use blue pen only.						
Tim	ne : 02:00:00 Hrs			Tota	l Mark	
	Part -A				5 X	1=5
1)	When three dice are rolled, number of elementary events are					
	(a) 2^3 (b) 3^6 (c) 6^3 (d) 3^2					
2)	Three coins are tossed. The probability of getting at least two heads is					
	(a) 3/8 (b) 7/8 (c) 1/8 (d) 1/2					
3)	If P(A) = 0.35, P(B) = 0.73 and P(A \cap B) = 0.14. Then $P(\overline{A} \bigcup \overline{B})$					
	(a) 0.94 (b) 0.06 (c) 0.86 (d) 0.14					
4)	If A and B are two events such that $P(A) = 0.16$, $P(B) = 0.24$ and $P(A \cap B) = 0.11$, then the probability of obtaining only one of the two events are two events and $P(A \cap B) = 0.11$.	is				
	(a) 0.29 (b) 0.71 (c) 0.82 (d) 0.18					
5)	Two events A and B are independent, then P(A/B) =					
	(a) P(A) (b) P(A \cap B) (c) P(A) = P(B) (d) $\frac{P(A)}{P(B)}$					
	Part -B				5 x 2	2 = 10
6)	An experiment has the four possible mutually exclusive outcomes A,B,C, D. Check whether the following assignments of probability are pe	rmissible.				
	P(A)=0.30,P(B)=0.28,P(C)=0.26,P(D)=0.18					
7)	An experiment has the four possible mutually exclusive outcomes A,B,C, D. Check whether the following assignments of probability are pe	rmissible.				
	P(A)=0.32,P(B)=0.28,P(C)=-0.06,P(D)=0.46					
8)	In a single throw of two dice, find the probability of obtaining (i) sum of less than 5 (ii) a sum of greater than 10,(iii) a sum of greater than 10	,(iii) a sum of 9 o	or 11.			
9)	Bag A contains 5 white, 6 black balls and bag B contains 4 white,5 black balls. One bag is selected at random and one ball is drawn from it.	•	-			
10)	There are two identical boxes containing respectively 5 white and 3 red balls, 4 white and 6 red balls. A box is chosen at random and a ball it the ball is white? Part -C If A and B are mutually exclusive events $P(A)=0.28$, $P(B)=0.44$, find $P(A\cup B)$ If A and B are mutually exclusive events $P(A)=0.28$, $P(B)=0.44$, find $P(\bar{A}\cap \bar{B})$ Given $P(A)=0.5$, $P(B)=0.6$ and $P(B)=0.24$.	is drawn from it	find tl	ne prob	ability	that
	the ball is white?				F 1	
11\	Part -C If A and B are mutually exclusive events P(A)=0.28, P(B)=0.44, find				5 X 3	3 = 15
11)	$P(A \cup B)$					
12)	If A and B are mutually exclusive events P(A)=0.28, P(B)=0.44, find					
•	$P(ar{A}\cap ar{B})$					
13)	Given P(A)=0.5,P(B)=0.6 and $(A\cap B)$ =0.24					
	$P(ar{A}\cap B)$					
14)	Given P(A)=0.5,P(B)=0.6 and $\ (A\cap B)$ =0.24					
	$P(ar{A}\cup ar{B})$					
15)	A die is thrown twice. Let A be the event."First die shows 4" and B be the event, 'second die shows 4'.Find $P(A \cup B)$					
	Part -D				4 x 5	5 = 20
	If A and B are independent, prove that \overline{A} and \overline{B} are independent.					
17)	If A and B are two independent events such that P(A U B) = 0.6,					
10\	P(A) = 0.2 find P(B) Given $P(A) = 0.50$, $P(B) = 0.40$ and $P(A \cap B) = 0.20$ Verify $P(B/\overline{A}) = P(B)$					
	Given P(A) = 0.50, P(B) = 0.40 and P(A B) = 0.20 Verity P(B/A) = P(B) Given that P(A) = 0.35, P(B) = 0.73 and P(A \cap B) = 0.14, find $P(\bar{A} \cap B)$					
13)	Given that $\Gamma(N) = 0.53$, $\Gamma(D) = 0.13$ and $\Gamma(N + D) = 0.14$, find $\Gamma(A + D)$					
