Model Question Paper

Nuclear Chemistry - Part II

12th Standard

	Chemistry Re	g.No. :				
I	I.Answer all the questions.					
I	II.Use Blue pen only.					
Tim	ne: 01:00:00 Hrs			Tota	Marks	
٠.	Section-A				5 x	1=5
1)	Radioactivity is due to					
	(a) Stable electronic configuration (b) Stable nucleus (c) Unstable nucleus (d) Unstable electronic configuration					
2)	In the following radioactive decay, $_{92}X^{232} ightarrow _{89} y^{220}$,how many $lpha$ and eta particles are ejected.					
	(a) 3α and 3β (b) 5α and 3β (c) 3α and 5β (d) 5α and 5β					
	$_{92}U^{235}$ nucleus absorbs a neutron and disintegrates into $_{54}Xe^{139},_{38}Sr^{94}$ and x.What will be the product x?					
	(a) 3 neutrons (b) 2 neutrons (c) $lpha$ particle (d) eta particle					
4)	Loss of a $eta-$ particle is equivalent to					
	(a) Increase of one proton only (b) Decrease of one neutron only (c) Both (a) and (b) (d) None of these					
5)	Which of the following is used as neutron absorber in the nuclear reactor?					
	(a) Water (b) Deuterium (c) Some compound of uranium (d) Cadmium					
	Section-B				6 x 3	= 18
6)	Explain the principle behind the Hydrogen bomb.					
7)	What is Radio carbon dating?					
8)	State two uses of radio carbon dating.					
	What is binding energy of Nucleus?					
	The half-life period of a radioactive element is 100 seconds. Calculate the disintegration constant.					
11)	The atomic masses of Li, He and proton are 7.01823 amu, 4.00387 amu and 1.00715 amu respectively. Calculate the energy evolved in the	reaction.				
	Section-C				3 x 5	= 15
	Balancing of nuclear reaction $_{17}Cl^{37} + _{1}H^2 \rightarrow _{18}Ar^{38} + ?$					
13)	$_{92}$ U ²³⁵ + $_{0}$ n ¹ \rightarrow $_{45}$ Mo ⁹⁵ + $_{57}$ La ¹³⁹ + $_{20}$ n ¹ + $_{12}$ e ⁰ The isotopic mass of $_{92}$ U ²³⁵ = 235.118 amu					
	The isotopic mass of ₄₅ Mo ⁹⁵ = 94.936 amu					
	The isotopic mass of $_{57}$ La ¹³⁹ = 138.95 amu The isotopic mass of $_{0}$ n ¹ = 1.009 amu Calculate the energy released in nuclear fission reaction					
14\	On neutron bombardment fragmentation of U-235 occurs according to the equation					
14)	$_{22}$ U ²³⁵ + $_{0}$ n ¹ \rightarrow $_{42}$ Mo ⁹⁵ + $_{57}$ La ¹³⁹ + x $_{-1}$ e ⁰ + y $_{0}$ n ¹ Calculate the values of x and y.					
	920 + 011 - 42MO + 57La + X-1e + Y 011 Calculate the values of X and y. Section-D				3 x 10	= 30
15)	a) On neutron bombardment fragmentation of U-235 occurs according to the equation.				3 X 10	- 30
,	$_{92}$ U ²³⁵ + $_{0}$ n ¹ \rightarrow $_{42}$ Mo ⁹⁸ + $_{54}$ Xe ¹³⁶ + x $_{-1}$ e ⁰ + y $_{0}$ n ¹ Calculate the values of x and y.					
	b) After 24 hours, only 0.125 g out of the initial quantity of 1g of a radioisotope remains behind, what is half-life period?					
16)	a) Half-life period of a radioactive element is 100 seconds. Calculate the disintegration constant and average life period. How much tir	ne will it ta	ke for 9	0% de	av?	
,	b) The half-life of cobalt - 60 is 5.26 years. Calculate the % activity remaining after 4 years.				. , .	
17)	a) Wooden artifact and freshly cut tree are having 7.6 and 15.2 counts min ⁻¹ g ⁻¹ of carbon (t½ = 5700 years) respectively. Calculate the	ige of the a	rtifact.			
	b) Half life period of a radioactive element is 1500 years. Find the value of disintegration constant in s ⁻¹ .	-				
