Model Question Paper

Nuclear Chemistry - Part V

	Nuclear Chemistry - Part V					
	12th Standard					
	Chemistry	Reg.No.:				
ı	I.Answer all the questions. II.Use Blue pen only. III.Question No 15 is compulsory.					
Tin	Fime : 02:00:00 Hrs			То	tal Mar	rks : 60
	Section-A				5	x 1 = 5
1)	1) eta - particle is represented as: (a) $_{+1}e^0$ (b) $_{-1}e^0$ (c) $_1H^1$ (d) $_2He^4$					
2)	In the nuclear reaction, $_{90}Th^{232}\longrightarrow _{82}Pb^{208}$, the number of $lpha$ and eta particles emitted are					
3)	3) $_{92}U^{235}+_{0}n^{1} ightarrow\ _{57}Xe^{139}+x_{-1}e^{0}+2_{0}n^{1}$. Then x is					
4)	(a) 2 (b) 3 (c) 5 (d) 7 In a first order reaction the time taken for 90% decay is 12 days. The time taken for 99.0 % decay is					
	(a) 24 days (b) 12 days (c) 36 days (d) 48 days					
5)	5) The rate of radioactive disintegration is					
	(a) directly proportional to the amount of radioactive substance present at that time (b) independent of the amount of radioactive	ve substance				
	(c) remains constant throughout the reaction for a particular disintegration (d) inversely proportional to the initial concentration	1				
	Section-B				5 x	3 = 15
6)	6) How radioisotopes are useful in industry and in agriculture					
7)	7) The $t_{1/2}$ of $_6C^4$ is 5700 years. Calculate the ages of an organic material that has undergone 93.75% decay					
8)	Write a note on nuclear fusion and hydrogen bomb					
9)	9) State and explain decay constant					
10)	10) Calculate the energy released in the following reaction $_{92}$ U ²³⁵ + $_{0}$ n ¹ \rightarrow $_{45}$ Mo ⁹⁵ + $_{57}$ La ¹³⁹ + $_{20}$ n ¹ + $_{-1}$ e ⁰ . The isotopic mass of U ²³⁵ , Mo ⁹⁵ , I	∟a ¹³⁹ and neutro	on are	e 235.	118, 94	.936,
	138.95 amu1.009 a.m.u respectively. Mass of ₋₁ e ⁰ neglible.					
	Section-C				5 x	c 5 = 25
11)	11) The decay constant for ₆ C ¹⁴ is 2.31× 10 ⁻⁴ <mark>year⁻¹ ca</mark> lculate the half li <mark>fe period</mark> .					
12)	12) How many $lpha$ and eta particles will be emitted by an element ₈₄ A ²¹⁸ changing to a stable isotope of ₈₂ B ²⁰⁶ ?					
13)	13) Complete the following nuclear reactions.					
	$(i)_{18} Ar^{40} + \ldots \longrightarrow_{19} K^{40} +_0 n^1$					
	How many $lpha$ and eta particles will be emitted by an element ${}_{84}$ A ²⁻³ changing to a stable isotope of ${}_{82}$ B ²⁻³ ? 13) Complete the following nuclear reactions. (i) ${}_{18}Ar^{40}+\ldots\ldots \rightarrow {}_{19}K^{40}+{}_0n^1$ (ii) ${}_{18}Ar^{40}+\ldots\ldots +{}_1H^1\rightarrow {}_2He^4+{}_2He^4$ (iii) ${}_{88}R^{236}\rightarrow \ldots\ldots +{}_2He^4$					
	$(iv)_{92}U^{238} ightarrow_{56} Ba^{143} + \ldots \ldots +_0 n^1$					
14)	Determine the average life of U ²³⁸ having $t_{1/2}$ =140 days.					
	(OR)					
	b) Complete the following nuclear reactions.					
	(i) ₄₂ Mo ⁹⁶ (,n) ₄₃ Tc ⁹⁷					
	(ii)($\alpha\alpha, 2n$) ₈₅ At ²¹¹					
	(iii) $_{94}$ Cm ²⁴⁶ $_{+6}$ C ¹² ->+4($_{0}$ n ¹)					
	(iv) $_{7}N^{15}(p,\alpha\alpha)$					
	$(v)_{11}Na^{23}(n,\beta\beta)$					
	(vi) ₁₉ K ³⁹ (p,d)					
	(vii) ₂₇ Co ⁵⁹ (d,p)					

 $\begin{aligned} & \text{(viii)} \ _{13}\text{Al}^{27}(\alpha\alpha, n).... \\ & \text{(ix)}_{11}\text{Na}^{23}\text{+}......-\text{>}_{12}\text{Mg}^{23}\text{+}_{0}\text{n}^{1} \end{aligned}$