Model Question Paper

Chemical Equilibrium - II - Part III

12th Standard

Chemistry	Reg.No.:			

I.Answer all the questions. II.Use blue pen only.

Time: 01:30:00 Hrs

Part-Δ

5 x 1 = 5

1) The degree of dissociation, x of PCI_5 at a given temperature is

- (a) inversely proportional to pressure (b) directly proportional to pressure (c) inversely proportional to square root of pressure (d) independent of pressure
- 2) In which of the following equilibrium $K_P < K_C$

 $\text{(a)} \quad CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)} \quad \text{(b)} \quad N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)} \quad \text{(c)} \quad H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} \quad \text{(d)} \quad N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} = 2NH_{3(g)}$

- 3) When equilibrium is attained
 - (a) [reactants] = [products] (b) $K_C=K_P$ (c) $R_f=R_r$ (d) reaction will be stopped
- 4) For the equilibrium $2SO_{2(g)} + O_{2(g)}
 ightleftharpoons 2SO_{3(g)}$ the unit for K_P
 - (a) atm (b) atm^{-1} (c) atm^2 (d) no unit
- 5) In an endothermic reversible reaction proceeding with increase in volume which of the following favours forward reaction?
 - (a) decrease of pressure and decrease of temperature (b) increase of pressure and increase of temperature (c) decrease of pressure and increase of temperature
 - (d) increase of pressure and decrease of temparature

Part-B 5 x 3 = 15

- 6) Mention the important uses of ammonia.
- 7) Give the K_D and K_C values for the formation of HI
- 8) What is the effect of pressure on the equilibrium $H_{2(q)}+I_{2(q)}
 ightleftharpoons 2HI_{(q)}$
- 9) State the optimum conditions to obtain maximum yield of NH₃ in Haber's process.
- 10) State the optimum conditions to obtain maximum yield of SO₃ in contact process.

6 x 5 = 30

- 11) How much PCI5 must be added to one litre volume reaction vessel at 250°C in order to obtain a concentration of 0.1 mole of Cl₂, K_C for PCI5 5 ← Cl₂ is 0.0414 mol dm⁻³ at
- 12) At 540K, the equilibrium constant Kp for PCl₅ dissociation equilibrium at 1.0 atm is 1.77 atm. Calculate equilibrium constant in molar concentration (Kc) at same temperature and pressure
- 13) 1 mole of N₂O₄ is taken in a 5 litre flask and allowed to attain the equilibrium N₂O₄⇒2No₂ At equilibrium 0.5 mol of NO₂ has formed. Calculate K_c for this equilibrium.
- 14) $0.1 \text{ mol dm}^{-3} \text{ of H}_2$, $0.2 \text{ mol dm}^{-3} \text{ of I}_2$ and $0.2 \text{ mol dm}^{-3} \text{ of HI}$ are taken in a flask and allowed to attain the equilibrium $H_2 + I_2 \rightleftharpoons 2HI$. When equilibrium is established the $H_2 = 2HI$ when equilibrium is established the
- 15) 2 mole of SO₂ and 2 mole of O₂ are taken in a flask and allowed to attain the equilibrium 2SO₂+O₂ \rightleftharpoons 2SO₃. At equilibrium 1 mole of SO₃ is formed. Calculate the total number o moles present at equilibrium.
- 16) Derive the expression for $\rm K_c$ and $\rm K_p$ for decomposition of $\rm PCl_5$

Part-D 2X10=2

- 17) a) In an equilibrium the rate constant of the forward reaction and equilibrium constant are given as 2.5X10⁻² and 4X10² respectively. Calculate the rate constant for the reverse reaction.
 - b) Equal number of moles of H₂ and I₂ are taken in a flask and allowed to attain the equilibrium H₂ + I₂ ⇌ 2HI. At equilibrium 20% of hydrogen get reacted. Calculate K₂ for this equilibrium.

	H ₂	l ₂	HI
Number of moles taken initially	1	1	
Number of moles reacted at equilibrium (20% of 1 = 0.2)	0.2	0.2	

- 18) a) Derive the values of K_p and K_c for the synthesis of hydrogen iodide.
 - b) Derive the relationship between K_p and K_c
