Model Question Paper

Chemical Equilibrium - II - Part I

12th Standard

	Chemistry	Reg.No.:			
I American ell the encoettere					

I.Answer all the questions. II.Use blue pen only.

Time: 01:30:00 Hrs

Part-Δ

5 x 1 = 5

- 1) State of chemical equilibrium is:
 - (a) dynamic (b) stationery (c) none (d) both
- 2) If the equilibrium constants of the following reactions are $2A \rightleftharpoons B$ is K_1 and $B \rightleftharpoons 2A$ is K_2 , then
 - (a) $K_1=2K_2$ (b) $K_1=1/K_2$ (c) $K_2=(K_1)^2$ (d) $K_1=1/K_2^2$
- 3) In the reversible reaction $2HI
 ightleftharpoons H_2 + I_2, K_p$ is
 - (a) greater than K_c (b) less than K_c (c) Equal to K_c (d) Zero
- 4) In the equilibrium $N_2(g)+3H_2
 ightharpoons 2NH_3$, the maximum yield of ammonia will be obtained with the process having
 - (a) low pressure and high temperature (b) low pressure and low temperature (c) high temperature and high pressure (d) high pressure and low temperature
- For the homogeneous gas reaction at 600 K $4NH_{3_{(g)}}+5O_{2_{(g)}}
 ightharpoons 4NO_{(g)}+6H_2O_{(g)}$ the equilibrium constant K_c has the unit
 - (a) $\left(mol\ dm^{-3}\right)^{-1}$ (b) $\left(mol\ dm^{-3}\right)$ (c) $\left(mol\ dm^{-3}\right)^{10}$ (d) $\left(mol\ dm^{-3}\right)^{-9}$

Part-B 5 x 3 = 15

- 6) Dissociation of PCI_5 decreases in presence of increase in CI_2 why?
- 7) Write the equilibrium constant for the following i) $H_2O_{2(g)} \rightleftharpoons H_2O_{(g)} + \frac{1}{2}O_{2(g)}$ ii) $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$ iii) $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$
- 8) State Le Chatelier's principle
- 9) What is equilibrium constant?
- 10) Why do equilibrium reactions referred to as dynamic equilibrium?

Part-C 6 x 5 = 30

- 11) Calculate the K_C, When a mixture containing 8.07 moles of H₂ and 9.08 moles of I₂ are reacted at 448°C until 13.38 moles of HI was formed at the equilibrium.
- 12) Initially, 0.1 moles each of H₂ and I₂ gases and 0.02 moles of HI gas are mixed in a reaction vessel of constant volume at 300K. Predict the direction towards which the reaction proceeds [Kc = 3.5 × 10⁻²].
- 13) Degree of dissociation of PCl₅ at 1 atm and 25°C is 0.2. Calculate the pressure at which PCl₅ is half dissociated at 25°C.
- 14) Derive the relation $k_p = k_c (RT)^{\Delta n_g}$ for a general chemical equilibrium reaction.
- 15) State Le Chatelier's principle. Discuss the effect of pressure, concentration and temperature on the following reaction. $N_{2(q)} + 0_{2(q)} \rightleftharpoons 2NO_{(q)}$
- 16) Derive the expressions for K_c and K_p for decomposition of PCI_5

Part-D 2X10=20

- 17) a) The equilibrium constant K_C for $A(g) \rightleftharpoons B(g)$ is 2.5×10^{-2} . The rate constant of the forward reaction is 0.05 sec⁻¹. Calculate the rate constant of the reverse reaction.
 - b) In the equilibrium $H_2 + I_2 \rightleftharpoons 2$ HI the number of moles of H_2 , I_2 and HI are 1,2,3 moles respectively. Total pressure of the reaction mixture is 60 atm. Calculate the partial pressures of H_2 , I_2 and HI in the mixture.
- 18) a) Discuss the effect of temperature and pressure on the following equilibrium:

 $N_2O_{4(g)}
ightleftharpoons 2NO_{2(g)}$ rianglerightharpoons H =+59.0 kJ/mole.

b) Derive the expression for K_c and K_p for the formation of HI...
