Model Question Paper 2 VECTOR ALGEBRA 2

11th Standard

	11th Standard				
	Maths	Reg.No. :			
	wer all the Questions		T. I. I	NA - ala	- 50
ıım	ne : 02:00:00 Hrs Part A		Total		s:50 1=6
1)	If the initial point of vector $-2i-3j$ is (-1,5,8), then the terminal point is				
	(a) $\overrightarrow{3i} + 2j + 8k$ (b) $-3i + 2j + 8k$ (c) $-3i - 2j - 8k$ (d) $\overrightarrow{3i} + 2j - 8k$				
2)	Which of the following vectors has the same direction as the vector $\vec{i} - 2\vec{j}$?				
	(a) $-\overrightarrow{i} + 2\overrightarrow{j}$ (b) $2\overrightarrow{i} + 4\overrightarrow{j}$ (c) $-3\overrightarrow{i} + 6\overrightarrow{j}$ (d) $3\overrightarrow{i} - 6\overrightarrow{j}$				
3)	If $\vec{a} = \vec{i} + \vec{j} - 2k$, $\vec{b} = -\vec{i} + 2j + \vec{k}$, $\vec{c} = \vec{i} - 2j + 2\vec{k}$, then a unit vector parallel to $\vec{a} + \vec{b} + \vec{c}$ is				
	(a) $\frac{\vec{i} - 2j\vec{k}}{\sqrt{6}}$ (b) $\frac{-\vec{j} + \vec{k}}{\sqrt{3}}$ (c) $\frac{2i + \vec{j} + \vec{k}}{\sqrt{6}}$ (d) $\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{3}}$				
4)	If $\vec{a} = 2\vec{i} + \vec{j} - 8\vec{k}$, $\vec{b} = \vec{i} + 3\vec{j} - 4\vec{k}$, then the magnitude of $\vec{a} + \vec{b} = \dots$				
	(a) 13 (b) $\frac{13}{3}$ (c) $\frac{3}{13}$ (d) $\frac{4}{13}$				
5)	If the position vectors of P and Q are $2\vec{i} + 3\vec{j} - 7\vec{k}$, $4\vec{i} - 3\vec{j} + 4\vec{k}$, then the direction cosines of \overrightarrow{PQ} are				
	(a) $\frac{2}{\sqrt{61}}$, $\frac{-6}{\sqrt{161}}$, $\frac{11}{\sqrt{161}}$ (b) $\frac{-2}{\sqrt{61}}$, $\frac{-6}{\sqrt{161}}$, $\frac{-11}{\sqrt{161}}$ (c) -2, -6, 11 (d) 1, 2, 3				
6)	The unit vector parallel to \vec{a} are				
	(a) $a = \frac{\vec{a}}{ \vec{a} }$ (b) $\pm \vec{a} $ (c) $\vec{a} = \vec{a} a$ (d) $\pm (a)$				
	Part B			7 x 2	2 = 14
7)	If ABCD is a quadrilateral and E and F are the mid-points of AC and BD respectively, prove that $AB + AD + CB + CD = 4EF$				
8)	In a regular hexagon ABCDEF if $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then express \overrightarrow{AC} , and \overrightarrow{EF} in terms of \overrightarrow{a} and \overrightarrow{b} .				
9)	\overrightarrow{b} , \overrightarrow{c} be the vectors represented by the three sides of a				
	triangle, taken in order, then prove that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$				
10)	If the vectors $2i - 5j + b$ k and $2i + aj + 4k$ are parallel find the values of \vec{a} and \vec{b} .				
11)	Find a unit vector parallel to the sum of the vectors $a = 22\vec{i} + 4\vec{j} - 5k$ and $-b = \vec{i} + 2j - 3\vec{k}$				
	Show that the vectors $\vec{a} - 2\vec{b} + 3\vec{c}$, $\vec{a} - 3\vec{b} + 5\vec{c}$ and $-2\vec{a} + 3\vec{b} - 4\vec{c}$ are coplanar where \vec{a} , \vec{b} , \vec{c} are non coplanar.				
13)	Prove that the medians of a triangle meet at a point. Part C			5 v 3	3 = 15
14)	Prove that the points $2\vec{i} + 3\vec{j} + 4\vec{k}$, $3\vec{i} + 4\vec{j} + 2\vec{k}$, $4\vec{i} + 2\vec{j} + 3\vec{k}$ form an equilateral triangle.			3 7 3	- 13
	If the vertices of a triangle have position vectors $\vec{i} + 2\vec{j} + 3\vec{k}$, $\vec{2i} + 3\vec{j} + \vec{k}$, $\vec{3i} + \vec{j} + 2\vec{k}$, find the position vector of its centroid.				
16)					
17)	Find the unit vectors parallel to $3\vec{a} - 2b + 4c$ Where $\vec{a} = 3\vec{i} - \vec{j} - 4k\vec{b} = -2\vec{i} - 4\vec{j} - 3k\vec{c} = \vec{i} + \vec{2} - \vec{k}$				
18)	If the position vectors of P and Q are \vec{i} + $3\vec{j}$ - $7\vec{k}$ and 5 \vec{i} - $2\vec{j}$ + $4\vec{k}$ find PQ and determine its direction cosines.				
	Part D			3 x 5	5 = 15
19)	The position vectors of the points A, B, C and D are \vec{a} , \vec{b} , $2\vec{a} + 3\vec{b}$, $\vec{a} - 2\vec{b}$ respectively. Find DB and AC .				

21) If \vec{a} and \vec{b} are position vectors of points A and B respectively, then find the position vector of points of trisection of AB.

Find the position vector of the points which divide the join of the points A and B whose PVs $\vec{a} - 2\vec{b}$ and $\vec{a} - 2\vec{b}$ are internally and externally in the ratio 3 : 2.